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Far better is it to dare mighty things, to win glorious 

triumphs, even though checkered by failure, than to rank 

with those poor spirits who neither enjoy nor suffer much, 

because they live in a gray twilight that knows not victory 

nor defeat. 

— Theodore Roosevelt 

If we knew what we were doing, it wouldn't be called 

research 

— Albert Einstein 
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Abstract 

This dissertation combines electrochemistry-based battery models and optimal control 

theory to study power management in energy storage/conversion systems. This topic 

is motivated by the need to enhance the performance and longevity of battery electric 

systems. In particular, the rapid progress in battery material science and energy 

conversion presents a highly relevant opportunity to bridge the knowledge gap between 

electrochemistry and control. Ultimately, this dissertation elucidates the key physical 

phenomena in battery-powered systems which enable opportunities to improve battery 

performance and health through control. We address this topic in three phases. 

First we provide an overview of battery fundamentals and relevant degradation 

mechanisms. Then we develop mathematical models for the electrochemical battery 

phenomena, plug-in hybrid vehicle drivetrain dynamics, and stochastic drive cycle 

dynamics. A battery-in-the-loop experimental test system is fabricated to identify the 

electrochemical battery model. 

Second, we investigate the battery-health conscious power management problem 

for plug-in hybrid electric vehicles (PHEVs). This effort designs controllers to split 

engine and battery power to minimize both fuel/electricity consumption costs and 

battery state-of-health degradation. Mathematically, this problem is formulated as a 

stochastic dynamic program. The degradation phenomena considered include anode-

side solid electrolyte interphase film growth and the "Ah-processed" model. This work 

is the first to utilize fundamental electrochemical battery models to optimize power 

management. 

The final phase proposes a novel battery pack management strategy which investi

gates the potential health advantages of allowing unequal yet controlled charge levels 

across batteries connected in parallel. Mathematically, this problem is formulated as a 

deterministic dynamic program. The optimal solutions reveal that capacity fade can 

be mitigated through controlled charge unequalization if concavity properties exist in 

the health degradation dynamics. The sensitivity of these results are analyzed across 

various degradation models derived from existing literature and experimental data. 

xv 
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In total, this dissertation utilizes physics-based battery models to optimize power 

management in energy storage systems. The unique overarching contribution is a 

systematic optimal control approach for elucidating the physical electrochemical prop

erties one can exploit through control to enhance battery performance and life. The 

second and third phases described above demonstrate how this approach can be very 

useful for PHEV and battery pack management applications 

XVI 
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Chapter 1 

Introduction 

This dissertation combines electrochemical physics and optimal supervisory control 

to study the tradeoffs between performance and health in battery-powered systems. 

The proposed health-conscious control algorithms have the potential to increase the 

performance characteristics and long-term energy capacity of bat tery packs. This 

is critically important for large scale bat tery energy storage systems - ranging from 

electrified transportat ion to stationary grid-scale storage - where replacement cost, 

bulk, and cycle life are inhibiting factors associated with the uncertainty in maintaining 

safe operation. Moreover, the framework presented here fuses electrochemical physics 

and control techniques to increase our intellectual understanding of how to manage 

their interaction. 

In order to design battery-health conscious power management algorithms via 

electrochemical principles, this dissertation introduces novel techniques for modeling, 

control problem formulation, and analysis. These techniques may be applied to any 

situation which involves complex physical models, multiple energy storage/conversion 

devices, stochastic dynamics, multiple objectives, and state/control constraints. This 

dissertation applies these techniques to plug-in hybrid electric vehicles (PHEVs) and 

lithium-ion battery packs. Nonetheless, the approaches are fundamental and extend 

beyond batteries and PHEVs. 

Ultimately, the results of this dissertation highlight which physical/mathematical 

properties in battery health degradation dynamics enable the use of innovative control 

techniques to enhance performance and health attr ibutes. These specific properties 

include slope and convexity of health degradation metrics with respect to state-of-

charge and current. This question has been generally unexplored in the literature. Yet 

it results from the innovative combination of electrochemical physics and supervisory 

control explored here. 

The remainder of this introduction is structured as follows. First, we motivate the 

above research question through its broader impacts on the energy and transportation 

1 
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Figure 1.1 Potential future energy infrastructure, in which battery energy storage miti
gates the intermittency of renewable energy generation. Photos sources: Tidal power photo 
from Pelamis Agucadoura wave farm project m Portugal, pumped hydroelectric storage 
photo from [2], flywheel diagram courtesy of Beacon Power Corporation. 

infrastructure. Second, we succinctly summarize the technical challenges associated 

with optimal power management of battery-powered systems via electrochemical 

modeling. Third, we review the existing literature which sets the foundation for this 

work. Finally, we summarize the contributions of this dissertation and outline their 

development in the subsequent chapters. 

1.1 Research Objective and Motivation 

The objective of this dissertation is to develop bat tery health conscious algorithms 

which manage power flow in energy systems. The relevancy of this topic is highlighted 

by the 27.2 billion USD federal government investment in energy efficiency and renew

able energy research, including advanced batteries and electrified transportation, under 

the American Recovery and Reinvestment Act (ARRA) of 2009 [11]. Techniques for 

battery-health conscious power management are further motivated by a vision for the 

future energy infrastructure, depicted in Fig. 1.1. Potentially, renewable energy will 

represent a significant portion of the energy generation mix. In the near term, ARRA 

2 
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Table 1.1 Renewable Portfolio Standards for Select States [1] 

State Renewable Energy as Year Full Requirements 
Percentage of Total Sales Take Effect 

California 33% 2030 

Colorado 20% 2020 

Hawaii 20% 2020 

Illinois 25% 2025 

Massachusetts 15% 2020 

Maryland 20% 2022 

Maine 40% 2017 

Michigan 10% 2015 

New Jersey 22.5% 2021 

Nevada 20% 2015 

New York 24% 2013 

Oregon 25% 2025 

Pennsylvania 8% 2020 

Utah 20% 2025 

Virginia 12% 2022 

Washington 15% 2020 

seeks to double nation-wide renewable energy capacity within two years [11]. In the 

long term, individual states are implementing renewable portfolio standards (RPS) to 

increase renewable energy production. The current RPS programs for several select 

states are included in Table 1.1 [1]. Yet most renewables such as wind, solar, and tidal 

power are fundamentally intermittent sources which do not temporally match energy 

demand. Overcoming this mismatch to enable significant penetration of renewable 

energy requires large scale energy storage. This is where electrified transportation 

can provide an enabling role. That is, large energy capacity battery packs on grid-

connected vehicles can potentially provide the necessary energy storage to enable 

significant penetration of renewable energy. This "vehicle-to-grid" infrastructure thus 

couples the electric grid and transportation to form a large scale distributed energy 

generation, storage, and consumption system [12, 13, 14]. 

The critical enabling technology to realize this future energy infrastructure is, 

arguably, the battery energy storage system. In this dissertation we focus on modeling, 

systems, and control to study optimal power management algorithms for these battery 

systems. To narrow the focus further we study battery health-conscious optimal power 

3 
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management in plug-in hybrid electric vehicle systems. Such health-conscious battery 

pack management has the potential to increase the useful life and reduce the long-term 

replacement costs of expensive high-capacity bat tery packs. This is important for 

ensuring the financial feasibility of battery energy storage in systems such as electric 

vehicles and smart grids, especially if such systems are able to share energy through, 

e.g., vehicle-to-grid (V2G) integration [15]. 

1.2 Literature Review 

Two general categories of research provide the foundation for optimal power manage

ment of battery-powered systems. These include fundamental bat tery research and 

optimal supervisory control (see Fig. 1.2). One of this dissertation's main goals is to 

connect these two previously separate bodies of literature. 

Figure 1.2 This dissertation seeks to contribute knowledge at the intersection of funda
mental battery research and optimal supervisory control. 

1.2.1 Fundamental Battery Research 

The first body of literature involves fundamental bat tery research. This research 

considers the theoretical and experimental design and analysis of batteries through 

mechanical, material, and chemical science techniques. Much of the fundamental 

4 
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operating principles are unified in excellent textbooks on electrochemical systems [16] 

and advanced batteries [17, 18]. 

In the area of Li-ion batteries, one of the first significant breakthroughs was the 

utilization of LiCo02 as the metal oxide cathode material. This battery design was 

eventually commercialized by Sony in 1991 [19]. More recently, LiFeP04 cathodes with 

olivine structures were introduced as low-cost, safe alternatives to lithium cobalt oxide, 

though they sacrifice some energy density [20]. During the development of Li-ion 

batteries, lithium polymer battery technology was born. The key difference in lithium 

polymer batteries is that the electrolyte is contained within a solid polymer as opposed 

to an aqueous organic solvent [21]. The key advantages of such a design include lower 

manufacturing cost and flexible packaging. An excellent overview (ca. 1991) of lithium 

battery technology, its promises, and challenges is provided by Tarascon and Armand 

[22]. 

A crucial development in lithium battery technology was the discovery of interca

lation compounds [22]. Intercalation, by definition, is the inclusion of one molecule 

between two other molecules. In the case of lithium batteries, the electrodes are made 

of intercalation compounds which effectively store and release lithium. Intercalation 

continues to be an extremely active area of research. Interested readers should refer 

to the historical perspective and research trends summarized in the survey paper by 

Broussley (ca. 1999) [23]. Example studies over the past fifteen years include the 

intercalation of carbon fiber micro-electrodes [24], the impact of carbonate solvents 

[25], and mechanical/thermal stress due to intercalation [26, 27]. The impact of 

structural design has also been considered with respect to optimal porosity [28] and 

conductivity in olivine [29]. 

A subset of this literature considers modeling degradation in lithium-ion batter

ies, including phenomena such as solid electrolyte interphase (SEI) layers, dendrite 

formation, carbon dissolution, electrolyte degradation, and electrode structural distor

tion. Excellent reviews by Aurbach [30], Arora [31], and Kanevskii [32] survey these 

various mechanisms in depth. In this dissertation we leverage a model particularly 

well-suited for model reduction and control applications that accounts for lithium 

diffusion dynamics, intercalation kinetics, and electrochemical potentials developed 

by Doyle, Fuller, and Newman [33, 34]. Ramadass et al. [7] added a degradation 

component to this model by including an irreversible solvent reduction reaction at the 

anode-side solid/electrolyte interface that generates a resistive film which consumes 

cyclable lithium. This mechanism has been identified as one of the chief contributors 

to capacity and power fade, whose effect is also representative of other mechanisms. 
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A more detailed overview of battery damage processes is provided in Section 2.1.1. 

1.2.2 Optimal Supervisory Control 

The second relevant body of research considers optimal supervisory control. Specifi

cally, we focus our attention to the power management problem in hybrid vehicles. 

An excellent overview of this research area ca. 2007 is provided by Sciarretta and 

Guzzella [35]. 

Deterministic dynamic programming generates provably optimal performance, yet 

requires exact knowledge of the input signal, i.e. drive cycle [36, 37, 38, 39]. In many 

cases, it is impossible to know the exact input a priori. However, it is often possible to 

identify and optimize with respect to the statistics of the input signal by modeling it 

as a random process. This idea motivates the use of stochastic dynamic programming, 

which generates a supervisory controller that is optimal with respect to the expected 

input behavior [37, 40, 41, 42]. 

Dynamic programming approaches are generally computed off-line and are optimal 

only with respect to a model - our mathematical idealization of the actual plant. In 

contrast, model predictive control methods are generally computed on-line. Namely, 

they determine optimal state and control trajectories over a receding time horizon 

using a predictive model and implement only the subsequent step. Real-time opti

mization necessities the use of relatively simple models, however the initial state can 

be recalibrated using measurement signals at each time step [43, 44]. Yet another 

concept, called Equivalent Consumption Minimization Strategy (ECMS), applies an 

instantaneous optimization procedure which minimizes the energetic equivalent fuel 

consumption of both engine fuel and electric battery energy [45, 46]. Recently several 

researchers have shown that this formulation is in fact a physical interpretation to 

instantaneous optimization using Pontryagin's minimum principle [47, 48, 49]. 

This body of research has considered various hybrid vehicle configurations, such 

as engine/battery [50], fuel cell/battery [37], fuel cell/ultracapacitor [46], ultracapaci-

tor/battery [51], and engine/hydraulics [52]. These strategies are typically optimized 

for objectives such as fuel consumption [37, 52, 45, 46, 43, 38, 39, 51, 41, 50], emissions 

[53], drivabilitiy [54], and/or combined fuel/electricity consumption [55, 42]. For 

PHEVs, several studies (e.g. [38]) have identified that the optimal strategy rations 

battery charge such that it reaches the minimum value exactly when the trip ter

minates. However, exact a priori knowledge of drive cycle behavior and length is 

typically not available. Moreover, there has been no work performed on optimizing 
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vehicle power management for battery health. In this dissertation, we shall consider 

battery health as an objective and directly encode trip length distribution information 

into the problem formulation. 

1.2.3 Estimation Techniques for Li-ion Batteries 

Although there have been few publications on controlling battery health degradation, 

the concept of modeling battery degradation in terms of charge capacity fade and 

increased internal resistance spawned a body of research known as state-of-health 

(SOH) estimation. Although this dissertation does not explicitly make contributions 

to SOH estimation, this body of literature is closely related and worth mentioning 

vis-a-vis the work presented here. 

Research on SOH estimation generally uses empirical equivalent circuit battery 

cell models to estimate charge capacity and internal resistance. Various algorithms 

have been investigated, including batch data reconciliation, moving-horizon parame

ter estimation [56], recursive least squares [57], subspace parameter estimation [58], 

slide-mode observers [59], impedance-based Kalman filters [60], and extended Kalman 

filtering [61, 62, 63]. The key advantage of these equivalent circuit model-based 

methods lie in their relatively low complexity. However, the state and parameter 

values correspond to phenomenological effects as opposed to the true physical values. 

Moreover, validation of these estimation algorithms is very difficult using in-situ 

methods [64]. 

More recently electrochemical models have been utilized in estimation algorithms. 

For example Smith et al. [65], Di Domenico et al. [66], and Klein et al. [67] respectively 

used linear Kalman filters, extended Kalman filters, and PDE observers to estimate 

the internal spatial-temporal states (i.e. Li-ion concentrations) of reduced order 

electrochemical models derived from [33, 34]. These investigations do not estimate 

SOH-related parameters. Combining state estimation with SOH-related parameter 

estimation is a difficult task for two reasons. First, the electrochemical models have 

10's of parameters which relate directly to capacity and power fade. Secondly, these 

parameters vary at significantly slower rates than the concentration dynamics. One 

recently reported approach uses an Unscented Kalman filter (UKF) in combination 

with least squares parameter identification [68]. Specifically, the UKF estimates the 

concentration states and least squares is employed every five cycles to identify the 

cathode porosity and electrolyte conductivity. 

Tangent to model-based battery estimation is prognostics. These studies focus on 
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predicting when a battery reaches its end-of-life, rather than identifying the exact SOH 

parameter values. Some of the techniques employed for battery health prognostics 

include particle filters [69, 70] and mechanical fatigue inspired-approaches [71, 72]. 

Nonetheless, none of these estimation or prognostic approaches seek to manage or at 

least mitigate battery health degradation via electrochemical modeling and optimal 

control. 

Prior to this dissertation, fundamental battery research and optimal supervisory 

control have been largely separate bodies of knowledge. Our focus is to investigate 

the interaction between electrochemical physics and control systems. Yet, the fusion 

of these two topics contains several technical challenges. 

1.3 Technical Challenges 

The design of optimal supervisory controllers for battery energy storage systems is 

particularly challenging for the following reasons: 

• The material properties, energy storage dynamics, health degradation mecha

nisms, and operating scenarios can vary widely from one battery to another. 

Therefore a fundamental framework for analyzing battery-health conscious power 

management is required. 

• The dynamics of electrochemical battery models are generally too complex for 

control design. These challenges are underscored in the context of this disserta

tion, which utilizes dynamic programming techniques that suffer from the "curse 

of dimensionality". Innovative model reduction, optimal control solution, and 

validation approaches are required. 

• The input signals are stochastic. That is, the load profiles (e.g. drive cycles, 

charge/discharge cycles) are typically unknown a priori. However the statistics 

of these inputs may be known. Therefore, new stochastic modeling and control 

techniques are required. 

• Optimal power management is, by itself, a non-trivial problem that requires the 

solution of an optimal control problem with multiple inputs, stochastic dynamics, 

state and control constraints, and multiple objectives. A fundamental framework 

which considers all these features is required. 
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1.4 New Contributions 

The overarching goal of this dissertation is to link battery electrochemistry with 

optimal supervisory control to enhance battery lifetime. This objective is comprised 

of three categories of contributions to knowledge on battery systems and control for 

energy systems: 

Model Development of Battery-Electric Systems (Chapter 2) 

• Integration of PHEV drivetram and electrochemical battery models: A first-

principles partial differential algebraic equation based electrochemical model is 

coupled together with PHEV drivetrain models, for the first time. (Sections 2.1 

- 2.2) 

• Model of power-split PHEV: An established power-split HEV model from Liu 

[73] is augmented with a high-energy capacity Li-ion battery model, engine 

start/stop dynamics, and higher accuracy actuator/state constraints. (Section 

2.2) 

• Markov chain model of drive cycle dynamics and daily trip length: Markov chain 

models of drive cycles are not new [37, 73, 41, 48]. However, the direct incorpo

ration of daily trip length distributions via an identified absorbing state in the 

Markov chain is new. (Section 2.3) 

Power Management via Stochastic Optimal Control (Chapter 3) 

• An energy consumption cost objective: This objective function includes the mone

tary cost of fuel and electricity, sourced from the gas pump and electric utility, 

respectively. This objective represents the true utilization cost of a plug-in 

hybrid electric vehicle. (Section 3.1) 

• Numerical techniques for constrained SDP problems: Many past methods enforce 

constraints through penalty functions [37, 73, 53] - a soft constraint method. 

In this dissertation we calculate the sets of admissible controls offline. These 

sets then become the admissible decision space over which optimization occurs 

online. Hence the constraints are hard. (Section 3.1.2) 

9 



www.manaraa.com

• Integration of high fidelity and reduced battery models into SDP formulation, solu

tion, and analysis: The full model is used for determining the sets of admissible 

controls and evaluating the resulting controllers. The reduced model is used for 

control optimization. This ensure the constraints of the full model are satisfied 

while retaining the numerical tractability of dynamic programming. (Section 

3.4) 

• Analysis of optimal Mending versus charge depletion-charge sustenance (CDCS): 

This analysis reveals how a power-split architecture and charge depletion strategy 

add an additional degree of freedom to regulate engine operation around its 

most efficient region. (Section 3.2.2) 

• Sensitivity to battery size, daily trip distance, and energy price : The sensitivity of 

optimal blending performance is evaluated against varying model parameters 

and input conditions. This analysis demonstrates when blending provides the 

greatest and least performance improvement over CDCS. (Section 3.3) 

• Battery-health conscious power management: This power management formula

tion considers battery health with energy consumption cost, for the first time. 

The example battery health metrics we analyzed include SEI layer growth and 

charge processed. (Section 3.4 - 3.5) 

• Relationships between optimal control and fundamental plant physics: Analysis 

of the optimal control solutions reveals which physical plant properties enable 

improved performance through control. Example include the analysis of opti

mal blending (Section 3.2.2) and battery health conscious power management 

(Section 3.4 - 3.5) 

Health-Conscious Battery Charge Management (Chapter 4) 

• Switching control paradigm for unequal charging of batteries connected in parallel: 

Conventionally, all batteries connected in parallel are constrainted to equal 

charge levels. This concept explores how unequal yet controlled charge levels 

may improve battery pack life. (Chapter 4) 

• Optimal control problem formulation including high fidelity and reduced order 

battery models with degradation: The optimal switching sequence for health is 
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determined via deterministic dynamic programming. Control optimization is 

performed on a reduced degrading battery model (4.2), while control evaluation 

is performed on a full order degrading battery model (Section 4.4.2). 

• Relationships between optimal control and degradation mechanism properties: This 

analysis reveals that unequal charge levels for batteries connected in parallel pro

vide advantages when certain concavity features exist in the physical degradation 

mechanisms. (Section 4.3.3) 

• Extraction of state-feedback rules: Analysis of the optimal trajectories reveals 

time-invariant patterns which are approximated by a "heuristic" state feedback 

control algorithm. Similar ideas have been explored by Lin [37], Kum [53] and 

their colleagues. (Section 4.3) 

• Sensitivity to alternative degradation models: The robustness of these results 

are evaluated against alternative degradation models taken from literature and 

experimental data. (Section 4.4) 

The research reported throughout this dissertation is based primarily on a series 

of publications by the author and his colleagues [55, 42, 74, 75, 76, 77, 10, 78]. 

1.4.1 Impact on Related Efforts 

In addition to the core contributions described above, the work presented in this 

dissertation has had notable impact on several related efforts, which we list here. 

Battery Experiments: A custom-built battery-in-the-loop test system was de

veloped to identify the electrochemical model described in Chapter 2. This test 

facility will also be utilized for future projects involving control system prototyping of 

battery management systems. Appendix A contains a complete description of this 

experimental rig and its components. This experimental effort also paved the way for 

new multi-channel battery testing facilities and float charging equipment to obtain 

data-driven models of health degradation. 

Extremum Seeking Control of Alternative Energy Conversion Devices: 

Extremum seeking (ES) deals with the problem of regulating a system to an unknown 

optimal set-point, which may be time-varying [79]. This effort consists of developing 

new theoretical advancements and applications of ES to fuel cell [80] and photovoltaic 

systems [81]. 
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Vehicle-to-Grid Integration: The PHEV models and supervisory control algo

rithms developed in Chapters 2 and 3, respectively, were utilized to develop optimal 

grid-to-vehicle charging profiles [82] and predict PHEV-related power demand on the 

grid [83]. This work forms the foundation for broader research questions on energy 

management in smart-grid systems. 

PDE Control: New theoretical developments in the area of PDE-based optimal 

control and estimation are currently underway [84]. These theoretical developments 

are motivated by the lack of control and estimation tools for the PDE-based battery 

model described in Chapter 2. 

Education on Battery Systems and Control: This dissertation has had a di

rect impact on a new course developed at the University of Michigan entitled "Battery 

Systems and Control." The course disseminates knowledge gained from this research 

to practicing engineers. Designing and delivering such a course is a unique opportu

nity among doctoral students. A high-level description of this course is provided in 

Appendix B, which is roughly based upon an education-focused publication by the 

course instructors [85]. 

1.5 Dissertation Organization 

This dissertation is organized as follows. Chapter 2 develops the mathematical models 

for the electrochemical battery physics, PHEV powertrain, and drive cycle dynamics. 

These models are used for control design in the subsequent two chapters. Chapter 

3 investigates battery health conscious supervisory control algorithms for PHEVs. 

Chapter 4 examines the potential of unequal charge levels in parallel-connected bat

teries through optimal control. Finally Chapter 5 summarizes the main results of this 

dissertation, its original contributions, and possible future research directions. 

12 



www.manaraa.com

Chapter 2 

Model Development 

This chapter introduces the physical dynamic system models used throughout this 

dissertation. These include models of the lithium-ion battery concentration dynam

ics, lithium-ion battery health degradation, plug-in hybrid electric vehicle (PHEV) 

powertrain, and stochastic drive cycles. 

2.1 Li-ion Batteries 

In the following, we review the fundamentals of battery operation and provide an 

overview of the important degradation mechanisms in Li-ion batteries. Next we develop 

two types of battery cell models: electrochemical and equivalent circuit. Following 

this discussion, we describe two battery health degradation models/metrics utilized 

in the optimal control studies. Finally, we discuss the construction of battery pack 

models from cells. 

2.1.1 Bat tery Fundamentals 

Jumping Frog Legs: A Brief History of the First Battery 

The first battery cell was invented by Italian physicist Alessandro Volta in 1800 (see 

Fig. 2.1). The so-called voltaic pile consisted of two metals in series, zinc and copper, 

coupled by a sulphuric acid electrolyte. Volta was inspired to construct this system in 

response to experiments performed by his colleague Luigi Galvani (Fig. 2.1), also an 

Italian physicist. Galvani was interested in the interaction between electricity and 

biological nervous systems. During his experiments, Galvani discovered that a dead 

frog's legs would kick to life when in contact with two dissimilar metals. Galvani called 

this phenomenon "animal electricity" and theorized it resulted from an electrical fluid 
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Allesandro Volta (1745-1827) Luigi Galvani (1737-1798) 

Figure 2.1 Alessandro Volta (left) [3] and Luigi Galvani (right) [4]. Volta is credited for 
inventing the first battery cell, the voltaic pile, in an effort to further investigate Galvani's 
experimental findings in "'animal electricity". Both images are available to the public domain 
from Wikimedia Commons. 

within the nervous system. Volta, on the contrary, reasoned tha t this behavior was 

caused by the different metals. The voltaic pile described above proved Volta's theory 

to be true. 

Principles of Operat ion 

A battery, put simply, converts chemical energy to and from electrical energy through 

an oxidation-reduction (redox) reaction. It consists of two dissimilar metals (the 

electrodes) connected by an electrolyte. The electrodes are electrically isolated from 

one another via a separator. Hence, as the redox reactions occur, cations flow between 

the electrodes through the electrolyte while electrons are forced through an external 

electric circuit. This process is sometimes reversible when an external electric potential 

is applied. This process is demonstrated by the zinc-copper Galvanic cell in Fig. 2.2. 

Fundamentally, all electrochemical cells operate under this principle. The impor

tant differences between types of battery cells relate to varying electrode and electrolyte 

materials. Electrode and electrolyte materials are typically selected for their voltage, 

charge capacity, conductivity, weight, cost, reactivity with other components, ease of 

handling, ease of manufacturing, etc. [17]. For example, lithium-ion cells have become 

very attractive in mobile applications [86, 19] because lithium is the lightest (6.94 
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Figure 2.2 An example zinc-copper Galvanic (or Voltaic) cell demonstrating the principles 
of operation for an electrochemical cell. 

g/mol) and most electropositive (-3.01V vs. standard hydrogen electrode) metal in 

the periodic table. Lead acid cells feature relatively heavy electrode materials (Pb 

and Pb02) , yet these cells can provide high surge currents and are cost effective. As 

a final example, lithium-air batteries feature cathodes that couple electrochemically 

with atmospheric oxygen, thus producing energy densities that rival gasoline fuel [87]. 

Overview of Degradat ion Mechani sms 

In addition to the operating principles described above, batteries undergo various 

degradation mechanisms that cause capacity and power fade. These mechanisms 

include dendrite formation, electrode chemical and/or structural distortion, electrolyte 

decomposition, and solid electrolyte interphase (SEI) layers. Excellent reviews of 

these damage mechanisms and more are reported in [30, 31, 32]. Below we provide an 

overview of the four mechanisms described above. 

In lithium or lithium-ion batteries, dendrite formation refers to the uneven growth 

of Li-metal, particularly in negative lithium or carbonaceous electrodes. These den-
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dritic structures can eventually pierce the separator material and cause a short-circuit. 

Once this occurs, rapid overheating and possibly combustion ensues. Dendrites growth 

can occur as a result of overcharging or rapid charging, where Li is deposited into 

the dendritic structures as opposed to intercalating within the negative electrode 

material [88]. Solutions to this problem generally include different electrode/electrolyte 

combinations or coating the negative electrode [22]. 

The electrode material in either electrode may degrade chemically and/or struc

turally for a number of reasons. For example, mechanical stress induced during 

intercalation and deintercalation can produce distortions in the crystal structure [26]. 

To partially overcome this limitation LiFeP04 utilizes olivine structures over spinel 

(in e.g. LiCo02 and LiMn02) which are generally more stable [20]. Another example 

is that cyclable lithium ions may can be consumed by the formation of a resistive 

surface layer through chemical decomposition. This manifests itself externally as both 

capacity and power fade. This process could occur at the anode [30] or cathode [89], 

depending on the electrode/electrolyte combination and operating conditions. 

A third failure mechanism is electrolyte decomposition. Reduction of the electrolyte 

material (particulary at the electrode surface) can consume salt and solvent species, 

therefore impacting diffusion rates and conductivity [22]. Electrolyte reduction may 

also produce gaseous products which increase internal pressure and ultimately cause 

catastrophic failure [31]. As such, there exists ongoing investigations to find new 

electrolyte materials, such as polymer electrolytes [21] or vinylene carbonate additives 

[90]. 

The fourth failure mechanism involves the SEI layer. Several experimental studies 

have identified lithium-consuming SEI as an important mechanism for capacity fade for 

cells with LiFeP04 cathodes and carbon anodes. These studies include ex-situ analyses 

[91, 92], in-situ analyses [93, 94], and cell design modifications that mitigate SEI layer 

growth [95, 90, 96]. For example, Amine et al. reported on a series of electrochemical 

impedance spectroscopy (EIS), Raman, and transmission electron microscopy (TEM) 

tests were carried out on pouch-type LiFeP04-graphite cells following cycling [95]. 

These tests identified an increased SEI layer on the graphite anode via EIS testing. 

For an excellent review EIS for determination of SOC and SOH, see Huet [97]. After 

50 cycles at an elevated temperature of 55°C, the anode contributes nearly 90% of 

the total cell impedance. More specifically, the semi-circular portion of the EIS curve 

increased most notably. The frequency range of this semi-circle corresponds directly 

with the charge-transfer dynamics associated with the resistive SEI film. An example 

of this behavior is illustrated in Fig. 2.3. After cycling, the cell was disassembled 
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Figure 2.3 EIS results for a fresh and aged Li-ion battery cell. Note the increase in size 
of the semi-circular shaped mid-frequency region, related to the charge-transfer dynamics. 
This corresponds to a growing SEI layer. Note that the data was synthesized for tutorial 
purposes and not taken from real measurements. 

and energy-dispersive X-ray spectroscopy was performed on the anode. The results 

indicate the presence of Fe metal at the graphite surface. These authors hypothesize 

that Fe2 + dissolved from the cathode surface due to HF acid in the electrolyte, diffused 

from the cathode into the anode, formed deposits on the negative electrode, and 

ultimately catalyzed the interfacial impedance in the anode. This phenomenon has 

been observed in a number of other studies, including [91, 90, 96]. 

Several researchers have proposed design modifications to C-LiFeP04 cells to 

mitigate the deposition of iron on the negative electrode and SEI film growth. For 

example, Amine et al. proposed a LiTi50i2 spinel anode in which the relatively high 

equilibrium potential of 1.5V vs. pure Li should theoretically reduce the reduction 

of Fe-ions on the electrode surface [95] In addition, they studied a LiBOB-based 

electrolyte which was shown to suppress the erosion of Fe from the LiFeP04 cathode. 

Wu et al. investigated the addition of vinylene carbonate (VC) in the electrolyte 

solution, which dramatically suppresses the dissolution of Fe from the LiFeP04 [90]. 

Finally, Chang et al. studied how various metal coatings of the carbon negative 

electrode may improve capacity life [96]. These authors found Au and Cu act as a 
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sieve to collect dissolved Fe ions resulting from LiFeP04 corrosion, preventing Fe from 

diffusing within the interior of the carbon electrode and catalyzing SEI formation. 

To contain this dissertation's scope, we focus our modeling and control efforts on 

SEI layer growth and other metrics of aging (Ah-processed). Yet, the methods are 

generalizable to other damage mechanisms - a key feature for extending and adapting 

this work. 

2.1.2 Bat tery Cell Models 

Two battery models are considered in the control design and analysis process. A high-

fidelity electrochemical-based model is used for constraint satisfaction and closed-loop 

simulation. A low-order equivalent circuit model is used for control optimization, 

since it has one state variable. The parameters of both models have been identified 

experimentally on a custom-built hardware-in-the-loop setup, for commercial Li-ion 

cells containing LiFeP04 cathode chemistries [98]. Interested readers my refer to [10] 

for further details on the genetic optimization procedure used to identify the parame

ters of the electrochemical model. In the following we summarize the electrochemical 

battery model and equivalent circuit model. 

Electrochemical Battery Model 

The electrochemical battery model captures the spatiotemporal dynamics of lithium-

ion concentration, electrode potential in each phase, and the Butler-Volmer kinetics 

which govern the intercalation reactions. A schematic of the model is provided in 

Fig. 2.4. This cross section displays three regions: a negative electrode (typically a 

lithium-carbon material), the separator, and a positive electrode (typically a lithium 

metal oxide). Each region is denoted by the subscript j G {n,s,p} representing 

the negative electrode, separator, and positive electrode respectively. The positive 

electrode material varies widely across manufacturer designs. However lithium iron 

phosphate (LiFeP04) cells were used to identify this electrochemical model. Each 

electrode region contains two phases, the porous solid and electrolyte. The separator 

has an electrolyte phase only. 

Mathematically, the electrochemical model structure is a coupled set of partial 

differential-algebraic equations. Parameter definition and values are provided in Table 

2.1. Diffusion of lithium ions in the solid cij(x,r,t) is idealized by spherical diffusion. 

Diffusion of lithium ions across the electrolyte c2j(x, t) is modeled by linear diffusion in 
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Figure 2.4 Structure of the electrochemical Lithium-ion battery cell model. 

Cartesian coordinates. Respectively, these phenomena are represented mathematically 

by: 

A j ^ ^ 2 ( 9 C l 
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(2.1) 

(2.2) 

where the variable J3 represents the local volumetric transfer current density due to 

Li-ion intercalation at the solid/electrolyte interface, D\tJ and D^ are the diffusion 

coefficients for the solid and electrolyte phases, t+ is the transference number, and F 

is Faraday's constant. 

The boundary conditions for spherical diffusion of lithium ions in the solid phase 

are given by: 

dx 

dx 

x,r,t) = 0 
r = 0 
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(2.4) 

19 



www.manaraa.com

where a3 is the specific surface area of the porous electrode. The second boundary 

condition (2.4) models the rate at which lithium ions are exchanged between the solid 

and electrolyte phases through intercalation at the particle surface (r = Rs). The first 

boundary condition (2.3) results from spherical symmetry. 

The boundary conditions for diffusion in the electrolyte are also Neumann-type, 

and are given as follows: 

D 

Dl2,eff,n 

dc2}3 

dx 

<9c2j 

(x,i) 
3c 2 j 

x=0 

2,eff,s- dx 

dx 

x,t) 
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(2.5) 

(2.6) 

(2.7) 

The first boundary condition (2.5) says there is no mass flow of lithium-ions outside 

the anode-separator-cathode sandwich. The subsequent two boundary conditions 

(2.6)-(2.7) are continuity conditions at the anode-separator and separator-cathode 

interfaces. 

The electric potential of each phase (solid: (f>it3, electrolyte: 0 2 j) within each 

region is determined by a parameter distributed form of Ohm's law. In the solid and 

electrolyte, this is given respectively by: 

J,(x,t) = lx(o 

Jj(x,i) = 

3 dx 

d fKeffdfo±\ + 9 
dx dx dx 

K 
d In C2,j 

dx 

(2.8) 

(2.9) 

The first terms in each equation above represent flux due to potential gradients. The 

second term in (2.9) represents the flux due to ionic concentration gradients in the 

electrolyte. The conductivities ae , Ke^', and K are included in the partial derivatives 

because they vary with concentration which varies in space. 

The model inputs (and outputs) are defined by the boundary conditions of the 

electric potential equations. When current is the input (iapp) the model runs in 

galvanostatic mode and voltage is defined. When voltage is the input (Vapp) the model 

runs in potentiostatic mode and current is defined. All potentials are defined relative 

to the potential of the anode's solid phase at x = 0. These conditions are given as 
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follows: 
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The remaining boundary conditions for the potential equations are continuity condi

tions. 
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The intercalation current J3 is governed by Butler-Volmer kinetics in (2.17), where 

rjj is the local overpotential defined by (2.18). 

f]3 (x, t) = (j)i}3 (X, t) - 4>2lJ (X,t) - Urefj ($3 ) 
J. 

a. 
•nfilm 

(2.17) 

(2.18) 

The term Uref:3 is the reference potential of the corresponding electrode, and is a 

function of the bulk electrode SOC 63. The term Rfiim is the resistance of the SEI 

layer and is described in detail in Section 2.1.3. From a supervisory control systems 

perspective, we define the total battery SOC to be the spatially averaged SOC of the 

anode. This definition allows us to distill the stored charge of the electrochemical 
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battery model into a single number. 

Leveraged Model Reduction Techniques 

In total, the electrochemical battery model is a system of partial differential algebraic 

equations. Moreover, these equations apply over three different regions, in which two 

regions contain multiple phases. Finally, there exist two spatial dimensions in the 

electrode solid phase. This complexity makes control design difficult. Even numerical 

simulation, by itself, is an extremely non-trivial task. In this dissertation we leverage 

the model reduction techniques co-developed in the laboratory group to solve these 

electrochemical model equations orders of magnitude faster than real-time. These 

techniques include: (1) Pade approximations of the spherical diffusion equations, 

which significantly reduce the number of states relative to finite differencing methods; 

(2) Real-time linearization (a.k.a. quasi-linearization) of the Butler-Volmer equations, 

which breaks the nonlinearity present in the algebraic equations and allows one to 

transform the model into a set of ODEs; (3) Projection of the states onto Legendre 

polynomials, which ultimately reduces the number of states relative to finite differ

encing. Readers interested in the complete details of the model reduction techniques 

should refer to [99]. 

Parameter Identification of the Electrochemical Model 

A genetic identification procedure was utilized to determine the electrochemical model 

parameters. The actual parameter identification procedure, results, and analysis are 

not products of this dissertation. However, the resulting identified model is utilized 

by this dissertation for control design purposes. As such, we describe the process at a 

high level. Interested readers should refer to Forman et al. [10] for more details. The 

identified parameters are reported in Table 2.1 and Appendix D. 

Fitting and validation data has been collected from a custom-designed battery-in-

the-loop test system, shown in Fig. 2.5, fabricated for this very purpose. Appendix A 

describes the details of fabricating this system. The data was obtained from LiFeP04 

ANR26650M1A battery cells with a 2.3 amp-hour capacity, a nominal voltage of 3.3 

volts, and a maximum continuous discharge current of 70 amps (30.4 C-rate). These 

cells are designed for transient high power applications including commercial PHEVs 

and portable power tools. 

A variety of different cycles were used for obtaining model identification and 
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validation data. These cycles include a CCCV chirp cycle, two naturalistic driving 

cycles, and four government certification driving cycles. The chirp cycle consists of five 

CCCV charge/discharge patterns between 2.0V - 3.6V with charge/discharge rates of 

5C, 2.5C, and IC. The naturalistic driving cycles were provided by the University of 

Michigan Transportation Research Institute (UMTRI). This data has been collected 

using real world drivers in midsized sedans equipped with over 200 data acquisition 

channels [100]. An individual's morning and evening commute were recorded to create 

the Naturalistcl and Naturalistc2 drive cycles The last four cycles, UDDSx2, US06x3, 

SC03x4, and LA92x2, are based on vehicle certification tests. The "x" indicates the 

number of times each drive cycle is repeated. Current profiles were generated from all 

six drive cycles by simulating the midsize power-split PHEV described in Section 2.2 

using controllers from Chapter 3. For consistency, each experiment begins with the 

battery at 90% SoC (3.35V relaxed). Due to sensor limitations, drive cycles which 

contain current magnitudes greater than 20A have been uniformly scaled down to 

have maximum magnitudes of 20A: US06x3, SC03x2, and LA92x2. These seven cycles 

provide a rich data set for performing parameter identification and validation on 

a battery model intended for PHEV-centric studies. The results of this effort are 

reported in [10]. 

Figure 2.5 Photo of battery-in-the-loop hardware configuration. 
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Table 2.1 Electrochemical Model Parameters 

Parameter Description Value 

Ln Length of anode 2.8853 x 10"5 m 
Ls Length of separator 1.6971 x 10~5 m 
Lp Length of cathode 6.5205 x 10~5 m 
Rn Radius of anode spherical particles 3.5961 x 10~6 m 
Rp Radius of cathode spherical particles 1.6371 x 10~7 m 
Ci,n,max Max concentration of anode solid 2.9482 x 104 mol /m 3 

ci,p,max Max concentration of cathode solid 1.0355 x 104 mol /m 3 

Di>n Diffusion coefficient in anode solid 8.2557 x 10~14 m 2 / s 
D1>p Diffusion coefficient in cathode solid 1.7362 x 10~14 m 2 / s 
D2 Diffusion coefficient of electrolyte 6.9114 x 10~10 m 2 / s 
eijn Porosity of solid in anode 0.3810 
£iiP Porosity of solid in cathode 0.4800 
£2,n Porosity of electrolyte in anode 0.6190 
e2jS Porosity of electrolyte in separator 0.3041 
e2)P Porosity of electrolyte in cathode 0.5200 
an Conductivity of anode solid 100 (Q m ) _ 1 

av Conductivity of cathode solid 100 (Q m ) _ 1 

A Cross-sectional area 0.3108 m2 

an Specific surface area of porous anode 3.1785 x 105 m 2 / m 3 

ap Specific surface area of porous cathode 8.7965 x 106 m 2 / m 3 

a Electrode transfer coefficients 0.5 
b Bruggeman's number 1.452 
k„ Kinetic rate constant in anode 8.6963 x 10~7 

(A/m 2) (mol/m3) l+a 

kp Kinetic rate constant in cathode 1.1267 x 10 7 

(A/m 2) (mol /m 3 ) 1 + Q 

RSEI Initial SEI resistivity 3.691 x 10"3 fi m2 

t+ Transference number 0.2495 
T Cell temperature 298.2 K 

Equivalent Circuit M o d e l 

Although the electrochemical model predicts the spatiotemporal concentration and 

potential dynamics of a battery cell, its complex structure is not easily conducive to 

optimal control. This fact motivates the use of a reduced equivalent circuit model with 

a single state. This model idealizes the bat tery as an open circuit voltage in series 

with an internal resistance. Both elements are continuous functions of SOC. Electric 
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power at the battery terminals P\,att is the input, resulting in the following dynamics: 

cr\(~i __ oc V oc ^-Lbatt-ti-batt ,~ IA\ 

^QbattRbatt 

To calculate the current / and voltage Vcea across each cell, one must know the 

battery pack configuration. That is, how many cells are arranged in series to produce 

the desired pack voltage, and how many parallel strings exist to achieve the desired 

energy capacity. Here we assume the use of 2.3 Ah 26650 format cells (to be consistent 

with our experimental batteries) arranged with ns = 110 in series, and np = 6 parallel 

strings. 

/ = SOC-Qbatt/rip (2.20) 

VcM = (Voc-IRbatt)/ns (2.21) 

Each cell is assumed to be identical or properly balanced through appropriate charge 

equalization schemes [101]. The current through each cell is used to calculate the 

anode-side film growth ra te discussed in Section 2.1.3. The voltage calculation is 

used to ensure each cell does not exceed safe operating limits - which we implement 

mathematically as constraints in the problem formulation in Section 4.2. 

Temperature dynamics and their impact on battery health is also a critical factor 

to consider [102, 103, 104]. In this work we constrain the scope to batteries whose 

temperature is controlled around 25° C through appropriate thermal management 

systems. Nonetheless, one may include thermal dynamics into the presented problem 

formulation - a topic for future consideration. 

2.1.3 Degradation Models 

Anode-s ide Fi lm G r o w t h Mode l of B a t t e r y Aging 

In this section we capture battery health degradation by modeling the resistive film 

which builds up on the anode solid/electrolyte interface [95, 105, 7, 30, 94, 90, 106]. 

This mechanism effectively consumes cyclable lithium ions and increases the internal 

impedance. The exact chemical side reaction depends on the chemistry of the electrode 

and electrolyte. Equations (2.22)-(2.27), developed by Ramadass et al. argue tha t 

a simple and general method for modeling capacity loss is to assume an irreversible 
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solvent reduction reaction of the following form 

S + Li+ + e~^P (2.22) 

where S denotes the solvent species and P is the product. 

As a result of this irreversible side reaction, the products form a film at the 

solid/electrolyte interface, which has a time and spatially varying thickness 8fzim(x,t) 

across the anode. This irreversibly formed film combines with the solid electrolyte in

terphase (SEI) resistance RSEI to compose the total resistance at the solid/electrolyte 

interface as follows 

RNm(x, t) = RSEI + W M ) (2.23) 
Kp 

where Kp, denotes the conductivity of the film, x is the spatial coordinate, and t is 

time. The state equation corresponding to the growth of film thickness, due to the 

unwanted solvent reduction described in (2.22), is given by 

a W M ) _ MP 

dt - " ^ J * t ] (2-24) 

In (2.24), MP, an, pp, and F represent the product's molecular weight, specific surface 

area, mass density, and Faraday's constant, respectively. The term JSd denotes the 

local volumetric current density for the side reaction, which is governed by Butler-

Volmer kinetics. If the solvent reduction reaction is irreversible and the variation of 

Li-ion concentration in the electrolyte is small, then we may approximate Jsa- by the 

Tafel equation [107]. 
/ - 0 5 F i ,\\ 

Jsd(x, t) = -i0,sane
( W^M (2.25) 

In (2.25), io,sj R, and T respectively denote the exchange current density for the side 

reaction, universal gas constant, and cell temperature. The term in^ represents the 

side reaction overpotential, which drives the solvent reduction reaction in (2.22). The 

overpotential is calculated according to 

Vsd(x,t) = <f>i(x,t) - <fa(x,t) - Us,ref ———R f i lm{x,t) (2.26) 
&n 

The variables <f>i and 02 represent solid and electrolyte potentials, respectively. The 

symbol Us,ref denotes the equilibrium potential of the solvent reduction reaction, which 

we assume to be constant. The total intercalation current Jtot represents the flow of 

charge exchanged with the anode-side electrolyte. Specifically, the total intercalation 

current Jn in the anode is given by the sum of current between the solid and electrolyte 
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Figure 2.6 Static approximation of film growth rate vs. cell current and SOC utilized for 
PHEV power management control synthesis. 

(J i ) , and the solvent reduction reaction and electrolyte (Jsd), tha t is 

Jn = Ji + Jsd (2.27) 

Equations (2.23)-(2.27) encompass the film growth subsystem of the Li-ion battery 

cell model, adopted from [7]. This subsystem connects to the remainder of the battery 

model (2.1)-(2.18) through the total intercalation current Jn and potentials (j>i and (f>2. 

Although this model captures complex physical phenomena such as coupled diffu

sion, intercalation, and film growth processes, its complexity makes control design for 

health management difficult. Therefore, the present research seeks to use the high 

fidelity model to generate simpler models for the purposes of control design. In the 

following, the anode-side film growth degradation dynamics will be approximated by 

a nonlinear static function, which enables optimal control design. Once the optimal 

control laws are derived from this approximate model, we simulate the closed-loop 

system with the full electrochemical model. 

To acquire insight on the relationship between bat tery cell SOC, current, and 

film growth rate, consider an ideal fresh cell, tha t is b~fiim(x, 0) = 0. Suppose all the 

intercalation currents, overpotentials, and concentration profiles are constant with 
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respect to space and correspond to zero initial applied current. Starting from these 

initial conditions, we simulate the electrochemical bat tery cell model for different 

initial SOC and applied current levels and measure the instantaneous film growth 

rate. From this data we produce a static relationship mapping cell SOC and applied 

current to the spatially averaged film growth rate 5fum, shown in Fig. 2.6. The map 

indicates tha t film growth rate increases with cell SOC. The film growth rate also 

increases as the discharge current becomes increasingly negative, i.e. for increasing 

charge current. Finally, film grows when zero current is applied, indicating that aging 

occurs even when the cells are not in use - a fact previously reported in the literature 

[106] and commonly seen in practice. A key question we revisit after obtaining the 

optimal control solutions is what insight about the structural properties of this map 

can be leveraged to design supervisory power management controllers that reduce film 

formation in PHEV battery packs? 

T h e Charge-Processed Mode l of B a t t e r y Ag ing 

In this section we capture battery health degradation dynamics via an empirical result 

found in numerous experimental studies [108, 109]. Specifically, this model assumes 

bat tery SOH degrades in direct proportion to the "charge-processed" through the 

battery. Physically, this implies that capacity fade mechanisms are insensitive to local 

SOC levels, depth of discharge, or electrode lithiation rates. Instead, these mechanisms 

progress in proportion with the integrated number of lithium ions intercalated or 

de-intercalated into the electrode. Generally speaking, this model suggests batteries 

degrade as their "mileage" increases. Mathematically, this means 

Capacity/Power Fade oc / \I(r)\dr (2.28) 
JT=0 

Both experimental studies utilized C-LiFeP04 cells, which is the chemistry we 

mostly focus on in this dissertation. However, they also cycled these cells under 

relatively mild conditions. These conditions are summarized in Table 2.2. In this 

table, one can see that Peterson et al. [108] applied scaled PHEV driving cycle loads. 

However, these loads were limited between -3C and +1C, which is significantly less 

than the 30C maximum continuous discharge rate quoted by the manufacturer [98]. 

Low C-rates (namely C/2) also characterize the experimental results found by Wang 

et al. [109], which use cells from the same manufacturer. In contrast to the first 

investigation, this work cycled the cells at an elevated temperature of 60°C, which 
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will induce accelerated capacity fade. 

Although it remains an open question whether capacity fade is correlated with 

SOC or depth of discharge for high C-rates, we consider Ah-processed as a very 

simple model for battery health degradation. That is, in Chapter 3 we design PHEV 

supervisory control algorithms which optimally blend fuel and bat tery energy in a 

manner that minimizes the total Ah-processed through each cell. 

Table 2.2 Cycling conditions for experimental studies on C-LiFeP04 cells relating Ah-
processed and capacity fade. 

Reference 

Peterson et al. 
[108] 

Wang et al. [109] 

C-rate 

Scaled PHEV drive cycle 
loads with C-rates ranging 
from -3C to +1C 
Constant current at C/2 

Depth of 
discharge 
34% to 97% 

10% to 90% 

Temperature 

Ambient room 
temp. (24-27°C) 

60° C 

Future Work: Data-dr iven Hea l th Mode l s 

Efforts to obtain data-driven models of bat tery health degradation are currently 

underway. These efforts consist of cycling multiple cells at various rates, depth of 

discharge levels, and temperatures using the experimental equipment shown in Fig. 2.7 

and 2.8. These tests have been carefully designed using theory on experimental design 

and Fisher information [110, 10]. Future work shall utilize the methods proposed 

throughout this dissertation on these models. 

2.1.4 Battery Pack Model 

Switched capacitor circuits [111, 112] are typically applied to equalize individual SOC 

levels for cells connected in series. In this article, we examine the potential advantages 

of allowing unequal charge levels for battery modules connected in parallel. A simple 

method to independently control module charge levels uses switches in protection 

circuits [113] (e.g. solid s tate relays or contactors). These devices are primarily 

designed to disconnect the battery in case of imminent catastrophic behavior, such as 

thermal runaway [114]. When multiple modules are arranged in parallel, individual 

solid state relays can be connected in series with each parallel branch. These relays 

may serve as one potential opportunity for individually controlling bat tery module 

SOC, and will be the topology we consider henceforth. 
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cells undergoing 
long-term 

cycling 

Figure 2.7 Arbin BT2000 32-channel battery test system used for data-driven health 
degradation modeling. 

T w o - M o d u l e Pack 

Consider a battery pack architecture consisting of two modules connected in parallel 

through two switches, where each module contains one cell for simplicity (Fig. 2.9). 

Figure 2.8 (a) Espec 1.5 cu ft. thermal chamber used for data-driven health degradation 
modeling, (b) LiFeP04 and Li-Polymer cells undergoing temperature controlled cycling. 
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Figure 2.9 Circuit diagram of battery pack. 

The goal is to determine the optimal switching strategy that minimizes the total film 

growth of both cells, given an exogenous current trajectory i0. Due to the computa

tional complexity of the distributed parameter electrochemical cell model described in 

Section 2.1, and the curse of dimensionality imposed by dynamic programming [115], 

we require a simplified model for control design. As such, we utilize an equivalent 

circuit model [62, 55], written in discrete time, with a ten second time step (AT = 10 

sec). This equivalent circuit model consists of an open circuit voltage source OCV 

in series with an internal resistor Rint. Open circuit voltage and internal resistance 

are nonlinear functions of SOC, that is OCV(zi) and Rtnt(zi) where % = 1,2. The 

state variables Z\ and z2 represent the SOC of battery cells 1 and 2 respectively. The 

dynamic equations for each cell are based on integrating current i\, i2 to obtain charge, 

and then dividing by the total charge capacity of the cell Q. 

zi,k+i = * i , * - 7 r A T (2.29) 

Z2,k+i = 2 2 , * - ^ A T (2.30) 

The currents i\, i2 are determined by the configuration of the switches and exogenous 

current demand on the battery pack i0. The currents are given by Kirchoff's current 

law, where the switching signals ^i and q2 equal zero and one when the corresponding 
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switch is respectively open or closed: 

h,k = <?i,fc(l - Q2,k)io,k (2-31) 

OCV(zlik) - OCV(z2>k) + i0}kRint(z2>k) 
+ D 1 V7~D 1 ^ Ql,kQ2,k 

•tUntyZlfi) + -n-mHz2,fcJ 
i2,k = (1 - Qi,k)Q2,kio,k (2.32) 

, OCV(z2,k) - OCV(zlik) + i0,kRint(zi,k) 

Rint(zl,k) + Rint{z2,k) 
-Ql,kQ2,k 

The first terms on the right-hand sides of (2.31) and (2.32) model one cell connected 

at a time. The second terms model when both cells are connected. When both q\ and 

q2 equal zero neither cell charges (i.e. both cells experience zero current). 

Parameterizat ion 

The parameters OCV and Rint for the equivalent circuit model are identified from 

experimental characterization of commercial lithium-ion cells with LiFeP04 cathode 

chemistries. The measured values are provided in Fig. 2.10. The open circuit voltage 

is determined by charging and discharging the cells at a C/10 rate across the entire 

voltage range. Then we average the measured terminal voltage for each SOC value. 

Internal resistance is determined by applying step changes in current and measuring 

the associated jump in terminal voltage, for each SOC value. This is done for both 

charging and discharging, rendering internal resistance as a function of SOC and 

direction of current flow. 

2.2 PHEV Powertrain 

The PHEV modeled in this dissertation has a power-split configuration based upon 

THS-II [5], with a lithium-ion battery pack enlarged to a 5kWh energy capacity for 

plug-in operation [116]. Figure 2.11 portrays the main components and configuration 

of the power-split configuration (also known as "series/parallel" or "combined". This 

architecture combines internal combustion engine power with power from two electric 

motor/generators (identified as M/Gl and M/G2) through a planetary gear set. The 

planetary gear set creates both series and parallel paths for power flow to the wheels. 

The parallel flow paths (dashed blue arrows) include a path from the engine to the 

wheels and a path from the battery, through the motors, to the wheels. The series flow 
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Open Circuit Voltage 

0.2 0.3 0.4 0.5 0.6 0.7 
SOC 

Internal Resistance 

0.8 0.9 

0.3 0.4 0.5 
SOC 

Figure 2.10 Parameterization of equivalent circuit battery model identified from com
mercial lithium-ion cells with LiFeP04 cathode chemistries. [Top] Open circuit voltage and 
[Bottom] internal resistance. 

path, on the other hand, takes power from the engine to the battery first, then back 

through the electrical system to the wheels (solid red arrows). This redundancy of 

power flow paths, together with battery storage capacity, increases the degree to which 

one can optimize powertrain control for performance and efficiency while meeting 

overall vehicle power demand. 

General parameters for the vehicle are provided in Table 2.3. A schematic of the 

PHEV system, the supervisory controller, and the relevant signals are given in Fig. 

2.12. The state variables include engine speed, vehicle speed, battery state-of-charge 

(SOC) and acceleration. Acceleration is governed by a Markov chain which captures 

drive cycle dynamics, described in Section 2.3. We design this Markov chain to 

explicitly account for real-world daily trip length distributions - which is relevant 

for PHEVs tha t will potentially recharge overnight. In addition, we also include 

a bat tery health degradation model based upon an electrochemical anode-side film 

formation mechanism. To provide some perspective on the computational complexity 

for SDP-based control studies, Table 2.4 summarizes the number of states and controls 
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Example of Power Flow 
along Series Path 

Example of Power Flow 
along Parallel Paths 

X i r x x i r x 

BATTERY PACK 

M/G1 

1 

INVERTER 

tmL*aJtmmmmmmmmm*mmwmmjEmmmSm 

ENGINE 

M/G2 

PLANETARY 
GEAR SET VEHICLE 

Figure 2.11 The single mode power-split hybrid architecture uses a planetary gear set to 
split power amongst the engine, M / G l , and M/G2 . Diagram adapted from [5]. 

for various hybrid configurations studied in the past decade. A power-split architecture, 

with four states and two controls, is one of the more complex systems to study In the 

following subsections we summarize the dynamic phenomena and governing equations 

for these models. Please reference the Appendix C for nomenclature definitions. 

2.2.1 Mechanical Subsystem 

The planetary gearset is at the heart of the power-split configuration. This three-port 

device couples the engine, motor/generator 1 (M/Gl), and motor/generator 2 (M/G2) 

crankshafts. The planetary gear set can be conceptually and mathematically treated 

as an ideal "lever" connecting the engine, two motor /generators, and vehicle wheels 

(through the final drive), as shown in Fig. 2.13. The dynamic-algebraic equations that 

describe this device are governed by Euler's law and a kinematic constraint relating 
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Table 2.3 General PHEV Model Parameters 

Vehicle 

EPA Classification 

HEV Configuration 

Base Curb Weight 

Midsize Sedan 

Power-split 

1471 kg 

Engine 

Type 

Displacement 

Max Power 

Max Torque 

Gasoline Inline 4-cylinder 

1.5 L 

57 kW @ 4500 RPM 

110 N-m @ 4500 RPM 

Type 
Motor/ Generators M/Gl Max Power 

M/G2 Max Power 

Permanent Magnet AC 
30 kW @ 3000-5500 RPM 
35 kW @ 1040-5600 RPM 

Battery Pack 

Cell Chemistry 

Energy Capacity 

Charge Capacity 

Number of Cells 

Cell Arrangement 

C-LiFeP04 

5 kWh for pack 

2.3 Ah per cell 

660 

110S6P 

Fuel Consumption 
Cost 

Grid Electricity 
Consumption Cost 

Anode-Side Film 
Growth Penalty 

Figure 2.12 PHEV powertrain system model. The supervisory controller provides the 
optimal engine, M/Gl , M/G2, and M/G2 torque inputs as a function of the PHEV states 
to minimize energy consumption and battery film growth. 
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Table 2.4 Previous SDP-Based Hybrid Vehicle Control Problem Formulations 

Configuration Reference States Controls 

Parallel HEV 

Parallel Fuel Cell 

Parallel HEV 

Power Split HEV 

Parallel HEV 

Dual Mode HEV 

Series-Parallel 
HEV 

Series Hydraulic 
Hybrid 

Lin/2004 [37] 

Lin/2004 [37] 

Johannesson/2007 [40] 

Liu/2007 [73] 

Tate/2007 [41] 

Tate/2007 [41] 

Opila/2010 [48] 

Johri/2010 [117] 

v, SOC, Pdem 

v, SOC, Pdem 

v, SOC, Pdem 

Ue,V,SOC, Pdem 

v, SOC, Pdem 

Loe,v,SOC,a,Tcat 

v, SOC, a, 
CurrentGear, 
EngState 

v, SOC, Pdem 

Pe 

he 
Pe 

Pe, TM/GI 

PSR 

We, Pbatt, Me, Mtrm 

Te,TransGear, 

TEMIOTUEMI 

Te_, Up 

Power Split PHEV Moura/2011 toe,
v, SOC, a Te,TM/Gi 

component speeds [73]: 

Ie 

0 

0 

R + S 

I M/Gl 

0 

0 

0 

/'»„ M/G2 

S -R 

R + S ' 
-S 
-R 
0 

We 

WM/GI 

WM/G2 

L F9 J 

T 
-1 e 

TM/GI 

1 M/G2 

0 

The terms I'M/G2 and T'M,G2 are effective inertia and torques 

T> 
1M/G2 
rpl 
1M/G2 

= IM/G2 + (Iw + mR2
tire)/K

2 

= T; M/G2 i iroad^tirel**• 

Froad = 0.5pCdAfrV
2 + Urolimg 

(2.33) 

(2.34) 

(2.35) 

(2.36) 

where Froad includes viscous aerodynamic drag and rolling friction forces. 

Liu [73] demonstrated that the differential-algebraic equations which govern all 

possible power-split designs satisfy a universal matrix format give by 

J D 

DT 0 F 

T 

0 
(2.37) 

where J is a diagonal matrix containing inertia of each component attached to the 

planetary gear set and D contains kinematic parameters associated with the coupling 
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RING GEAR 

PLANET 
CARRIER 

PLANET 
GEAR 

T. =TM;r9 co. = * w , 
M/G2 nng M'G2 

M/G2 (VEHICLE) 

SUN GEAR 

Figure 2.13 Planetary gear set and lever diagram. The engine, M/Gl , and M/G2 are 
attached to the planet carrier, sun, and ring gears, respectively. 

between gears. This format has the special property that one may analytically solve 

for the state variables Cl without explicitly determining the gear force F or inverting 

the matrix on the LHS of (2.33). The resulting matrix ordinary differential equation 

is: 

fi = J " 0 5 [I - E(ETE)~1ET] J~05T (2.38) 

This process results in two degrees of freedom, since originally there exist three ordinary 

differential equations and one algebraic constraint. 

The control inputs include engine torque Te and M / G l torque TM/GI- The engine is 

allowed to shut off by considering an "engine off" torque input command, which causes 

the engine speed to drop to zero within the span of one supervisory control time step 

(one second in this case). When positive torque is commanded from the engine while it 

is in the shutoff state, the engine is brought back to idle speed within one supervisory 

control time step. During both engine-on and engine-off modes, and transitions in 

between, the equations in (2.33)-(2.36) must be respected. For example, Coe = 0 when 

the engine remains off. When the engine is commanded to turn on, then Coe must equal 

the appropriate value such that it reaches idle speed in the next simulation time step. 

If the engine speed must be above idle to meet the motor/generator speed constraints, 

then uje must correspond to this speed change. The same type of calculations are 

used for engine shut-down. M / G 2 torque TM/Q2 is determined by the states and 

control inputs since COM/G2 is proportional to the acceleration s tate a according to 

WM/G2 = ctK/Rare- This concept is illustrated by the hybrid state automata depicted 
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Figure 2.14 Hybrid state automata used for engine shut-off and start-up transition, 

if Fig. 2.14. 

2.2.2 Electrical Subsystem 

Both M/Gl and M/G2 interface with the battery pack, as shown in Fig. 2.12. These 

devices are modeled by power efficiency maps supplied by the Powertrain System 

Analysis Toolkit (PSAT) [9]. The motor/generator inertial dynamics are accounted 

for in (2.33), while their significantly faster inductive dynamics are approximated as 

instantaneous. The electrical powertrain also consists of power electronics. However, 

their dynamics are also ignored since they exceed the 1Hz bandwidth typically con

sidered in power management studies. Nonetheless, their power transfer losses are 

accounted for in the motor/generator power efficiency maps, provided in Appendix D. 

Hence, the governing equations for the electric subsystem are given by: 

Pbatt = PM/GI^M/GIVM/GI + PM/G2WM/G2VM/G2 (2.39) 

f-1, Ttut>0 r , 
kt = { for i = {M/Gl,M/G2} 

[1, 7 > , < 0 
(2.40) 
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2.3 Drive Cycle Models 

An important new contribution we apply toward plug-m HEV power management 

is to model drive cycles with a first-order Markov chain containing a terminal state. 

Namely, the terminal state can represent "vehicle off" which signifies when the drive 

cycle terminates and no more cost accrues. The concept of a terminal state in Markov 

chain models of drive cycles is not new and has been applied in the context of HEVs 

[41]. However, it has critical importance for plug-m HEV power management. Namely, 

a terminal state allows us to model distributions of drive cycle length directly. As 

demonstrated by O'Keefe and Markel [38], drive cycle length is critically important for 

plug-m HEV power management. They demonstrate that the optimal strategy rations 

bat tery charge through blending engine and bat tery power such tha t SOC reaches 

the minimum level exactly when the tr ip terminates, if the drive cycle is known a 

prion. This is in contrast to HEV power management, where battery SOC is typically 

sustained around a fixed value. In a later study Larsson, Johannesson, and Egardt 

studied the sensitivity of energy consumption to uncertainties in t r ip length [118]. 

Specifically, they formulated dynamic programming problems in which trip length was 

modeled by a Gaussian distribution. They discovered notable savings in fuel costs 

even with relatively little knowledge of trip length. We extend this work by directly 

incorporating daily trip length distribution information using this terminal state. This 

modeling approach is not new, and has been applied in the context of HEV power 

management [54]. Yet, its utility is particularly well suited for plug-in applications. 

Mathematically, the Markov chain is given by 

pljm = Pr(a f c+1 = j \ak = i, vk = m) (2.41) 

pltm = Pr(a fc+i =t\ak = i,vk = 0) (2.42) 

1 = Pv(ak+1=t\ak = t,vk = 0) (2.43) 

which maps acceleration-velocity pairs to a probability distribution over acceleration 

in the next time step (2.41)-(2.42). These transition probabilities are identified from 

certification cycles and real-world micro-trip da ta [42]. We derived the transition 

probabilities in 2.41 from this data using maximum likelihood estimation [119]. The 

Markov chain model assumes that the current state is conditioned only on the state 

immediately preceding it. We validated this assumption by computing the model 

residuals and confirming that their autocorrelation exceeds the 95 percent confidence 

interval for no more than 5 percent of all lag values that are 25% of the length of the 
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data set or less - as is the case for a white noise process [120]. 

Figure 2.15 visually demonstrates the transition probabilities at zero vehicle speed 

where there exists non-zero transition probabilities to the absorbing state for certain 

velocity-acceleration pairs. When acceleration reaches the terminal state t, it remains 

in that s tate with probability one (2.43) and no further cost is incurred. In other 

words, the vehicle is off and the trip is over. 

Figure 2.16 demonstrates the distribution of trip length for the Markov chain, in 

which the transition probabilities pltm in (2.42) have been identified from the 2009 Na

tional Household Travel Survey (NHTS) database [121]. Specifically, the probability of 

transition to "vehicle off" is zero unless the vehicle is completely stopped (vk = 0) and 

has zero or small negative acceleration. Without adding distance as a state variable, 

it is difficult to perfectly match the Markov chain and NHTS data. Nevertheless this 

approach integrates a reasonably accurate representation of real-world trip lengths 

without adding an exponential increase in computational complexity - a key benefit. 

In the results presented in Chapter 3 we evaluate each controller across a library 

of 1,000 drive cycles generated from the Markov chain. An example randomly gen

erated drive cycle is shown in Fig. 2.17. This process enables us to quantify the 

performance metrics across a distribution of drive cycle characteristics, rather than 

single certification cycles such as UDDS. 

To provide more insight on the characteristics of the Markov chain model vis-a-vis 

government certification cycles, Fig. 2.18 portrays the distributions of road power 

demand for various cycles. The road power demand is calculated from the following 

equation 

Pdem = mav + -AfrCdv
3 + /irngv (2.44) 

which includes acceleration/deceleration, viscous air drag, and power loss due to rolling 

resistance. The parameters correspond to the PHEV model described in Section 2.2. 

Figure 2.18 superimposes various certification cycles over the Markov chain model. 

One can see how the Markov chain is generally more aggressive (i.e. higher power 

demand magnitudes) than UDDS, yet less aggressive than US06. In HWFET, which 

consists of mostly sustained high speeds experienced in highway driving, the distribu

tion mean is shifted toward positive power. The New European Drive Cycle (NEDC) 

is relatively mild and experiences a large amount of stops (0 kW). These certification 

cycles, along with the Markov chain, will be used to evaluate various PHEV power 

management control designs in Chapter 3. 
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Figure 2.17 A sample randomly generated drive cycle from the Markov chain model. 
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2.4 Summary 

This chapter utilizes first-principle physics to develop dynamic system models of the 

components considered throughout this dissertation. These components include Li-ion 

batteries, PHEV powertrains, and stochastic drive cycle dynamics and length. In 

the discourse on Li-ion batteries, we provide an overview of battery fundamentals, 

important degradation mechanisms, and the electrochemical transport, diffusion, in

tercalation, and electric dynamics. A custom-built battery-in-the-loop test system 

is also fabricated to identify the electrochemical model. The dynamics for each cell 

can be combined into battery packs, which are subsystems of the PHEV drive train. 

We specifically focus on a power-split architecture, yet other architectures can be 

considered as well. Finally, we describe a Markov chain modeling approach to predict 

drive cycle behavior in a statistical sense [37]. A new contribution to drive cycle 

modeling is the direct encoding of daily trip length through the utilization and proper 

identification of a terminal state (i.e. "vehicle off") within the Markov chain. These 

models will be utilized in the subsequent chapters to design battery-health conscious 

power management algorithms. 
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Chapter 3 

Stochastic Control for 
Health-Conscious PHEV Power 

Management 

This chapter investigates bat tery health conscious power management in plug-in 

hybrid electric vehicles through a novel combination of electrochemical modeling and 

stochastic control. This framework is a critical step toward increased performance and 

longevity of battery-powered systems. The controllers are designing to minimize both 

energy consumption (fuel and grid-supplied electricity) and battery health degradation 

metrics (SEI layer or Ah-processed). Several recent studies have considered the HEV 

power management problem for extending battery life. These studies focus on depth 

of discharge control [122, 123], power electronics management[124], and temperature 

management [125]. To date, however, no studies have applied models that explicitly 

account for specific electrochemical degradation mechanisms in the context of an 

optimal control framework, to the author's knowledge. 

As a foundation, we first consider optimal blending without battery health. Then 

we analyze the sensitivity of these algorithms to bat tery size. Next we include 

electrochemistry-based degradation mechanisms and analyze the tradeoff between 

reducing energy consumption and reducing battery damage. Analysis of the optimal 

solutions reveal which physical properties (i.e. slope properties of the degradation 

model) enable increased performance and longevity through control. The design and 

analysis framework begins with a formulation of the general stochastic optimal control 

problem. 
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3.1 Optimal Control Problem Formulation 

The control objective is to synthesize a static function mapping the PHEV state vari

ables to the engine and M/Gl torque inputs such that both energy consumption cost 

(i.e. fuel and grid electricity) and battery health degradation in terms of anode-side 

film growth are minimized. We formulate this as a shortest-path1 stochastic dynamic 

programming problem. 

mm: 

subject to: 

J9 = 

Xk+l = 

x e 

u e 

lim E 
' N 

y^c(xfc,-ufc) 
_fc=o 

f(xk,uk,wk) 

X 

U(x) 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

where J9 is the cost for a given control policy g and c(xk,uk) is a function that maps 

the state and control vectors to an instantaneous cost. Note that 3.1 is formulated as 

an infinite-horizon problem, which brings forth the question of whether J9 is finite. 

Indeed, J9 is guaranteed to be finite since the system enters the terminal state (i.e. 

"vehicle off") in finite time with probability one and incurs zero addition cost hence

forth. As such, the cost function J9 is guaranteed to be finite. The system dynamics 

summarized in discrete-time by (3.2) are provided in Chapter 2, with a one-second 

time step. This optimization is subject to sets of state and control constraints, X and 

U(x) respectively, described in detail in Section 3.1.2. Our objective is to solve for 

the optimal control policy g* which satisfies. 

g* = arg min J9 (3-5) 
geG 

where Q denotes the set of all feasible control policies. 

3.1.1 Objective Function 

The minimization of both energy consumption cost and battery health is, generally 

speaking, a multi-objective optimal control problem. For simplicity, we combine both 

1The shortest-path term [126] is used for Markov decision processes that contain a terminal state 
in the Markov chain, such as our drive cycle model. 
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objectives into a scalar objective with linear weighting a, given mathematically by 

c(xk, uk) = a- cE(xk, uk) + (1 - a) • cH(xk, uk) + cSOc(xk, uk) (3.6) 

where the individual objective functions are given by 

/ \ n rrr —VOCQbattSOC 
CE(Xk,Uk) = pafueiWfuei + aeiec (3.7) 

Vgrid 

CH{xk,Uk) = 5film(I,SOC) OR \I/Imax\ (3.8) 

\*soCs™Cm%o°cC- HSOC<SOCmm cSoc{xk,uk) = { soc— soc™ (3.9) 
10 else 

Equation (3.7) represents the instantaneous energy consumption cost in USD, which 

includes both fuel and grid charging costs. The first term of (3.7) quantifies PHEV 

fuel consumption, while the second term quantifies electricity consumption, and the 

coefficient /3 makes it possible to carefully study tradeoffs between the two. Specifically, 

Wfuei represents the fuel consumption rate in grams per time step. The constant 

parameter ctfue\ then converts this rate to an energy consumption rate, in megajoules 

(MJ) per time step. Similarly, the second term of (3.7) represents the instantaneous 

rate of change of the battery's internal energy. The constant parameter aeiec converts 

the electricity consumed to MJ per time step. Dividing this change in stored battery 

energy by a constant charging efficiency rjgrid = 0.98 (which corresponds to a full 

recharge in six hours) furnishes an estimate of the amount of energy needed from the 

grid to replenish the battery charge consumed during the trip. Note that the second 

term is positive when the PHEV uses stored battery energy and negative during 

regeneration. Hence, there exists a reward for regeneration that offsets the need to 

consume grid electricity. The magnitude of this reward depends on the parameter (5, 

which represents the relative price of gasoline per MJ to the price of grid electricity 

per MJ is defined as follows: 

Price of Gasoline per MJ . . 
Price of Grid Electricity per MJ 

We refer to this parameter as the "energy price ratio," and use it to examine the 

tradeoffs between fuel consumption and electricity consumption in PHEVs. Through

out this dissertation, we use (3 = 0.8, consistent with the average energy prices in 

June 2010, namely $2.73 USD per gallon of gasoline [127] and $0,094 USD per kWh 

of electricity [6]. 

46 



www.manaraa.com

Equation (3.8) represents one of two types of battery health models: the instanta

neous anode-side SEI film growth, characterized by the map depicted in Fig. 2.6, or 

the normalized magnitude of applied current in a single battery cell. In the following 

subsections we consider PHEV power management controllers which minimize both 

of these measures of health degradation. In principle, other degradation models may 

also be input here. Additionally, both objectives are normalized by scaling the range 

of their physical values to values between zero and one. 

Equation (3.9) invokes a linear penalty when the SOC falls below a minimum 

value. The parameter asoc is a penalty weight. The inclusion of this term produces 

the charge sustaining behavior we desire once the minimum SOC value is reached. 

We vary the weighting a in (3.6) between zero and one to obtain the convex subset 

of the Pareto optimal control policies. The complete Pareto optimal set would require 

multi-objective dynamic programming techniques, such as those developed in [128]. 

Henceforth, we refer to the convex subset of Pareto optimal solutions as, simply, the 

Pareto set - although this is admittedly an abuse of terminology. 

3.1.2 Constraints 

In addition to minimizing the aforementioned objectives, the power management algo

rithm satisfies constraints on both the states and control actions. These constraints 

correspond to physical operating limits, zones of safe operation, and actuation limits. 

Rate of change constraints are not considered here, although they can be easily added 

in this formulation. The state constraints are given by 

We,min\Pe) < We < UJe,max (3 -11) 

UM/Gl,min < <^M/G1 < W M/Gl ,mai (3-12) 

U)M/G2,min < <^M/G2 < <^M/G2,maz ( 3 . 1 3 ) 

SOCmin < SOC<SOCmax (3.14) 

Minimum engine speed is equal to idle speed when the engine is on, which is typically 

enforced for combustion stability, noise, vibration, and harshness. Minimum engine 

speed is zero otherwise. The minimum M/Gl speed constraint also produces an inter

esting effect in a power-split configuration. If the engine is off, then UM/GI will violate 

its minimum value if vehicle speed, which is proportional to 0JM/G2, is sufficiently high, 

due to the kinematic relationship in (2.33). Consequently the engine must turn on 

for vehicle speeds greater than 36 mph, even when sufficient battery charge exists to 
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run in all-electric mode. This constraint partly motivates the need for a dual-model 

power-split where all-electric operation is possible at high speeds [73]. 

The control constraints are given by the following: 

J- e,mm _ J- e _ J-e,max\We) yo.i.0) 

TM/Gl,min(uM/G\) < TM/G1 < TM/Gl,max {w M/Gl) ( 3 . 1 6 ) 

TM/G2,min{wM/G2) 5: TM/G2 < TM/G2,max{w>M/G2) (3 -17) 

VCell,min < Vceu < Vcell,max ( 3 . 1 8 ) 

lcell,min _: ^cell _ *cell,max yo.i.\J) 

The minimum M/G2 torque is determined by two constraints: saturation limits 

on M/G2 and the maximum battery pack voltage, which can be violated if too 

much regenerative power is supplied to the battery at, for example, high SOC levels. 

Hence the minimum M/G2 torque is a function of several states and control inputs 

TM/G2,min = TM/G2,mm(SOC, uM/G1,TM/G1, LUM/G2). The residual M/G2 torque after 

applying these constraints is provided by hydraulic braking. 

To enforce both the state and control constraints we apply the following method. 

For all state and control pairs we simulate the subsequent state using (3.2) and the 

full electrochemical model. If any constraints are violated then the corresponding 

control inputs are removed from the set of admissible controls, for the given state. 

This process generates the set of admissible controls U[x) for each state, which can 

be computed offline from the stochastic dynamic programming algorithm. 

Numerically, the SDP problem is solved via modified policy iteration, where the 

policy evaluation step is approximated through successive value iterations. This 

algorithm has the property that convergence to the optimal policy occurs in finite 

time [126]. More details on the implementation of this algorithm can be found in the 

next subsection. 

Since we solve the stochastic dynamic programming problem for a sweeping range 

of a, and simulate the resulting controllers across 1,000 cycles each, we leverage parallel 

computing resources at the University of Michigan Center for Advanced Computing. 

3.1.3 Numerical Techniques 

This section presents the numerical techniques used to solve the optimal power 

management problem posed in the previous sections. 

The SDP problem, which is framed as an infinite-horizon shortest-path problem, is 
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solved via modified policy iteration, where the policy evaluation step is approximated 

through successive value iterations. This algorithm has the property that convergence 

to the optimal policy occurs in finite time [126]. The approach begins with a uni

form discretization of the admissible state and control input sets, X and U(x). This 

discretization makes the optimal power management problem amenable to computer 

calculations, but generally produces suboptimal results. For a very thorough study 

of various discretization techniques, refer to the Ph.D. dissertation of Tate [41]. We 

use the symbols X and U(x) to refer to both the continuous and discrete-valued state 

and control input sets for ease of reading. Given the discrete-valued sets, we apply 

a modified policy iteration algorithm to compute the optimal power management 

cost function and policy. This algorithm consists of two successive steps, namely, 

policy evaluation and policy improvement, repeated iteratively until convergence. For 

each possible PHEV state, the policy iteration step approximates the corresponding 

"cost-to-go" J, which may be intuitively interpreted as the expected cost function 

value averaged over a stochastic distribution of drive cycles starting at that state. 

The policy improvement step then approximates the optimal control policy g*, corre

sponding to each possible PHEV state. This process iterates, as shown in Fig. 3.1, 

until convergence. The following subsections present the policy iteration and policy 

improvement steps in further detail. 

Policy Evaluation 

The policy evaluation step computes the cost-to-go for each state vector value, x, given 

a control policy, g. This computation is performed recursively as shown in (3.20): 

Jn+l{x) = c(x,u) + Ea [Jn(f(x,u])} (3.20) 

The cost-to-go J is guaranteed to be finite because the system will reach the absorbing 

state (i.e. vehicle-off) in finite-time with probability one and incur zero cost henceforth. 

The expectation is taken over vehicle acceleration a, whose dynamics are governed by 

a Markov chain representing drive cycle behavior (See Section 2.3). The index n in the 

above recurrence relation represents an iteration number, and the recurrence relation 

is evaluated iteratively for all state vector values in the discretized set of admissible 

states, X. In general, the cost-to-go values within the expectation operator must be 

interpolated because f(x,u) will not always generate values in the discrete-valued 

state set X. The true cost-to-go for a given control policy must satisfy Jn = Jn+\. 
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As such, we iterate (3.20) until one of two possible conditions are satisfied: (1) the 

infinity-norm of the normalized difference between Jn and Jn+i fall below a threshold 

value, or (2) a finite number of iterations are reached. This truncated policy evaluation 

approach, used in combination with the policy improvement step below, converges 

to the optimal control policy regardless of the maximum number of iterations. See 

[129, 130, 131, 126] for the theory underlying this method. 

Policy Improvement 

Bellman's principle of optimality indicates that the optimal control policy for the 

stochastic dynamic programming problem in (3.1)-(3.2) is also the control policy that 

minimizes the cost-to-go function J(x) in (3.20). Thus, to find this control policy u*, 

we minimize cost-to-go over all admissible controls for a given state U(x) for each state 

vector value x, given the cost-to-go function J(x). Mathematically, this minimization 

is represented by: 

u*(x) = arg min < c(x,u) + Ea[J(x)} > (3-21) 
ueu(x) I J 

Equation (3.21) imposes the state and control input set constraints from Section 3.1.2 

by minimizing over the admissible control set U(x). 

After both policy evaluation and policy improvement are completed, the optimal 

control policy is passed back into the policy evaluation step and the entire procedure 

is repeated iteratively. The process terminates when the infinity norm of the difference 

between two consecutive steps is less than 1%, for both the cost and control functions. 

Reducing Computational Effort 

Dynamic programming is, generally speaking, computational intensive because it 

suffers from the so-called curse of dimensionality. That is, the complexity of the 

solution algorithms increase exponentially with each additional dimension added to 

the control-state space [126]. For the PHEV power management problem considered 

in this dissertation, there exist four states (ue, v, SOC, a) and two control inputs 

{Te,TM/G1). These six dimensions produce a problem that is more complex than 

most HEV power management studies. This dissertation does not seek to investigate 

efficient numerical techniques for SDP. However, we shall highlight basic techniques 

which are effective in making the relatively complex problem under consideration 
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computationally tractable. 

Vectorization: The most effect method to reduce computational effort, by far, is to 

vectorize the model equations in (3.2). This allows one to input a vector of control 

inputs and receive a vector of outputs, as opposed to using a for-loop. 

Custom Interpolation Code: The most computationally intensive task of SDP, in 

this author's experience, is interpolating the cost function over the states calculated 

for the next time step in (3.20). For this reason we designed stripped-down, singular 

purpose codes that sacrifice error checking and general purpose features for speed. 

Offline Calculations: As an iterative process, SDP repeats several calculations over 

and over. However, many of these calculations are identical through each iteration 

and can be performed once offline. Examples include finding admissible control sets, 

inverting large matrices, preallocating variable space, and discretizing state-control 

spaces into meshed grids. In the code used to generate all the results shown here, we 

take advantage of this opportunity whenever possible. 

Control Space Reduction: Note that in the policy improvement step (3.21) one 

must compute the cost of all possible controls to find the minimizer. In this work we 

calculate the admissible control set U(x) for a given state x offline. That is, for each 

state we determine the subset of control actions which satisfy all the state and control 

constraints described in Section 3.1.2. This allows us to perform the minimization 

in (3.21) over a subset of the complete control space, hence reducing computational 

complexity. A more detailed description of this process is described in Section 3.4. 

Overhead Reduction: Simulink® is a very popular tool for modeling vehicle sys

tems. However it suffers from overhead calculations that are often unnecessary in the 

context of SDP. Therefore all models are directly coded in Matlab® with stochastic 

dynamic programming applications in mind. 

There exist a number of focused studies on the computational aspects of stochastic 

dynamic programming. These include state-control sampling with Barycentric coordi

nates [41], linear programming approximations [132], iterative dynamic programming 

[133, 134, 135, 136], and approximate dynamic programming (ADP) [137, 138, 139], 

to name a few. 
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discrete-time step ahead 

x{k+l)= f(x(k),ujx(kj) 

,r x(k + l) 

Interpolate cost-to-go over 
state values one step ahead 

Jn(x(k + \)) 

Jn+](x) = c(x,ujx)) + Ea[j„(f(x,ujx)))] 

YES 

r / i< . 

Irnprovtmert 

J. n+l 

um+l(x) = arg mm {c(x,u) + Ea[J(x)]} 

J. 
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Figure 3.1 Modified policy iteration flowchart. The process consists of two successive 
steps, policy evaluation and policy improvement, repeated iteratively until a convergence 
criterion is satisfied. 
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3.2 Optimal Blending without Battery Health 

In this section we first consider optimal PHEV power management results without 

considering battery health. This analysis is important for contextualizing and inter

preting the results when battery health is considered. Mathematically, this problem is 

formulated by disregarding the battery health term in the objective function (3.6). 

In this section we compare the optimal blending solution resulting from the problem 

formulated in Section 4.2 to a more conventional strategy. Namely, it is common in 

PHEV power management research to use control laws that first prioritize battery 

energy consumption, until they enter a charge sustenance mode like those used by 

conventional HEVs [140, 141, 142]. We refer to this method as charge depletion, 

charge sustenance (CDCS). Representative CDCS and blending SOC trajectories are 

demonstrated in Fig. 3.2. Generally speaking, CDCS seeks to enter the CS-region in 

minimal time. In contrast, blending attempts to mix engine and battery power such 

that the SOC reaches the minimum SOC exactly when the trip terminates. CDCS is 

implemented in the SDP framework here by defining the following cost function. 

^ (sOC + cSOc(xk,uk) if SOC> 0.3 
c{xk,uk) = < (3.22) 

[ atfueiWfuei + cSoc(xk, uk) else 

where csoc is defined in (3.9). This formulation penalizes SOC in the charge depletion 

region (see Fig. 3.2), therefore causing the power management algorithm to deplete 

electricity whenever possible. If the electric machines are capable of meeting the peak 

power demand of a given drive schedule, this formulation will produce an all-electric 

range during charge depletion. If the electric machines cannot meet power demand 

or sufficient SOC does not exist in the battery, then the CDCS algorithm requests 

engine power to satisfy drive cycle power demand. When the battery reaches the 

charge sustenance region (i.e. SOC < 0.3 in Fig. 3.2), the second case in (3.22) is 

taken. This cost function forces the power management algorithm to sustain charge in 

a manner that minimizes fuel consumption. This cost function is extremely common 

in DP-based HEV power management [37, 38, 73, 41]. 

3.2.1 Performance 

To illustrate the potential performance improvements of a blending strategy over 

a CDCS strategy, consider their responses for two FTP-72 drive cycles simulated 

53 



www.manaraa.com

Time / Distance 

Figure 3.2 Typical SOC trajectories for the charge depletion, charge sustenance (CDCS) 
and optimal blending strategies. 

back-to-back, as shown in Fig. 3.3 and 3.4. The total cost of energy for this tr ip is 

6.4% less for the blended strategy relative to CDCS, and fuel consumption is reduced 

by 8.2%. Blending accomplishes this by utilizing the engine more during the charge 

depletion phase, thereby assisting the bat tery to meet total power demand more 

often than CDCS. Although in the blended case the engine operates at higher loads, 

therefore consuming more fuel, the engine efficiency is greater and, as demonstrated 

in Fig. 3.4, bat tery charge depletes more slowly. As a result, blending and CDCS 

incur nearly the same total energy costs through the depletion phase (Fig. 3.3), and 

the advantage of blending in terms of overall cost arises from its delayed entry into 

charge sustenance. 

The benefit of delayed entry into charge sustenance is evident from previous re

search in the literature in which the PHEV drive cycle and total tr ip length were 

assumed to be known a priori (e.g., [38], [141]). For example, in [38] deterministic 

dynamic programming furnished blending strategies that reached minimum SOC 

exactly when the PHEV trip terminated, thereby never allowing the PHEV to enter 

the charge sustenance mode. This result agrees with our current findings, namely, 

tha t the primary benefit of blending strategies results from their ability to delay or 

eliminate the need for charge sustenance. However, the approach in [38] requires 
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knowledge of trip length a priori. Since SDP explicitly takes into account a probability 

distribution of drive cycle behavior, our identified strategy is optimal in the average 

sense. 

1000 1500 
Time (sec) 

Figure 3.3 Running energy consumption costs for blended and CDCS control strategies 
on two FTP-72 cycles simulated back-to-back. The total cost (solid line) is the sum of fuel 
(dashed line) and electricity (dotted line) costs. 

"•• Blended 
• • CDCS 

t M M r % f W I I 

500 1000 1500 
Time (sec) 

2500 

Figure 3.4 State-of-charge response for blended and CDCS control strategies on two 
FTP-72 cycles simulated back-to-back. 

Performance improvements of blending over CDCS are uniform across all the drive 

55 



www.manaraa.com

cycles shown in Table II, where the drive cycle lengths are selected to ensure that the 

vehicle reaches charge sustenance before the trip terminates. If the vehicle reaches 

its destination before entering charge sustenance phase, however, the total energy 

consumption costs are nearly identical for blending and CDCS (as demonstrated in 

Fig. 3.3). Therefore the blending strategy proposed herein has no significant energy 

consumption cost penalty for early trip termination. Note that some of the largest 

improvements are observed for drive cycles that were not used to estimate the Markov 

state transition probability matrix. 

3.2.2 Engine Control 

A significant benefit of the power-split architecture is the fact that it decouples the 

engine crankshaft from the road, and allows the electric machines to move engine speed 

where fuel efficiency is maximized [5]. This optimal operating line is identified by the 

black dashed line in Fig. 3.5(a) and 3.5(b). As shown in Fig. 3.5(a), the blending 

strategy initially operates the engine at fairly low speeds and high torques, close to the 

optimal fuel efficiency operating line. This occurs even when power demand can be 

met by the electric motors alone. The excess engine power goes towards regenerating 

battery charge, which the blended cost function in (3.7) rewards. Moreover, the 

electric machines are not generally saturated and are thus free to maintain low engine 

speeds and high efficiencies. In contrast, the CDCS strategy causes the engine to 

remain at very low brake torque levels during depletion, where fuel consumption is low 

but so is engine efficiency (Fig. 3.5(b)). Moreover, significant power is requested from 

the engine only when the electric machines saturate and cannot meet driver power 

demand by themselves. This limits the control authority of the electric machines when 

driver power demand is large, thereby reducing their ability to move engine speed 

to the optimal operating line. These observations explain how the blending strategy 

utilizes the engine and electric motors more efficiently, thereby delaying the charge 

sustenance phase and improving overall PHEV operating costs. 

3.2.3 Energy Price Ratio 

An important feature of the proposed power management algorithm is its dependence 

on the energy price ratio, j3 , which varies temporally (e.g., by year) and spatially 

(e.g., by geographic region). To investigate the nature of this dependence, we obtained 

the history of energy price ratios since 1973 [6], shown in Fig. 3.6. The value of ft 
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Figure 3.5 Engine operating points for (a) the optimal blended strategy and (b) CDCS 
strategies on a brake specific fuel consumption map, for two FTP-72 cycles simulated 
back-to-back. 
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Figure 3.6 Historic values for the energy price ratio f3 from 1973 to 2007 [6]. Note how 
the variation corresponds with shifts in oil and electricity prices. 
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Figure 3.7 State-of-charge response for varying (3 (blended) and CDCS control strategies 
on two FTP-72 cycles simulated back-to-back. Blending approaches CDCS as (3 approaches 
infinity. 

has clearly changed significantly over the past 35 years due to shifts in both oil and 

electricity prices. This motivates the need to understand how this parameter impacts 

optimal PHEV power management. 

Consider the SOC depletion responses shown in Fig. 3.7 for controllers synthesized 

with energy price ratios in the set (3 G 0.4, 0.6, 0.8,1.0,1.2 and for a CDCS strategy, 
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which by definition does not depend on (3. Several conclusions can be drawn from this 

parametric study. First, as (3 approaches infinity (i.e. fuel becomes infinitely more 

expensive than grid electric energy), the optimal blending strategy converges to a 

CDCS strategy. This is consistent with the fact that the CDCS strategy implicitly 

assumes the cost of fuel is infinitely more than the cost of electricity. Secondly, for 

sufficiently low f3 (i.e. electricity becomes more expensive than fuel), the optimal 

blending strategy generates electric energy. The implicit assumption leading to this 

result is that the driver is able to sell energy back to the grid when the vehicle is 

plugged in. Although electricity prices are unlikely to be this high in general, real-time 

pricing could motivate using the vehicle as a distributed power generator during 

periods of peak demand when conventional generation is scarce [13]. This suggests 

that, with the appropriate exchange of information, a vehicle could be configured to 

modify its control policy in real time to reflect grid conditions, a key benefit when 

considering vehicle-to-grid infrastructures. 

59 



www.manaraa.com

3.3 Impact of Varying Battery Size 

In this section our goal is to analyze the coupling between battery size and control 

strategy. Specifically, our aim is to quantify how control strategy choice enables the 

use of smaller battery sizes, in terms of both operating cost and energy consumption. 

Smaller battery sizes could be interpreted as a design choice, or a result of capacity 

fade in a used battery pack. To facilitate this analysis, we first define an analysis 

methodology. Secondly, we analyze the coupling of control strategy and battery energy 

capacity in terms of two PHEV performance metrics: operating cost and energy 

consumption. Third, we consider how daily driving duration (that is, the driving time 

between PHEV recharge events), affects PHEV performance. Finally, Section 3.3.4 

closes with an analysis of control strategy/battery size coupling as a function of the 

energy price ratio. 

3.3.1 Analysis Methodology 

Distributions for the PHEV performance characteristics are calculated by simulating 

each control strategy (Blended and CDCS) and battery size in Table 3.1 configuration 

over the entire distribution of trip duration and drive cycles. For each battery size 

option, we synthesize both a blended and CDCS control law as formulated in Section 

3.1 - without considering battery health. We then evaluate the performance of the 

control law / battery size combination by the following approach: 

1. Generate optimal control strategies for varying battery sizes (and corresponding 

vehicle weights) and energy price ratios, subject to the model described in 

Chapter 2. 

2. Randomly generate daily drive cycles from the Markov chain model described 

in Section 2.3 

3. Simulate the closed loop PHEV model across the distribution of random drive 

cycles, generated in step 2. 

4. Record the distribution of performance characteristics 

5. Repeat steps 1-4 across a range of energy price ratios 

The number of randomly generated drive cycles used to estimate the distribution 

of performance characteristics is determined by the statistical distribution convergence 

criterion described in Appendix E. Step 5, which obtains performance characteristics 

across a range of energy price ratios, furnishes the data presented in Section 3.3.4. 
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Table 3.1 Battery Pack Energy Capacities, No. of Cells, and PHEV masses 

Energy Capacity No. of Li-ion Cells PHEV curb weight 

2 kWh 263 cells 1374 kg 

4 kWh 526 cells 1393 kg 

6 kWh 789 cells 1411 kg 

8 kWh 1052 cells 1430 kg 

10 kWh 1315 cells 1448 kg 

12 kWh 1578 cells 1467 kg 

14 kWh 1841 cells 1485 kg 

16 kWh 2104 cells 1503 kg 

3.3.2 Operating Cost & Energy Consumption 

Figures 3.8(a) and 3.8(b) respectively depict the distributions of operating cost (USD 

per 100 km) and energy consumption (MJ per 100 km) across a range of battery energy 

capacities. The operating cost includes both the cost of fuel from the pump, and 

electricity from the grid necessary to recharge the battery to its initial SOC level. The 

distributions are represented by box and whisker plots, where the (x) symbol denotes 

the distribution average and the whiskers are limited to 1.5 times the interquartile 

range. 

For each battery size we observe that the distribution of operating costs and energy 

consumption for the blended strategy is consistently better or approximately equal 

to the CDCS distributions. Moreover, the advantages of blending appear to be more 

pronounced as battery energy capacity decreases. This can be explained by noting that 

as battery energy capacity decreases, the probability of fully depleting the battery on 

a given trip increases for either strategy. This fact is important because, as discussed 

in 3.2, blending's key advantage is that it increases the time required to fully deplete 

the battery. This reduces the time spent in costly charge sustenance mode, where the 

engine is forced out of its sweet spot in order to satisfy drive cycle power demand and 

regulate the battery SOC. Since the two strategies are roughly cost-equivalent during 

the charge depletion phase, the differences between them are most prevalent on cycles 

that force CDCS into charge sustenance mode for a significant period of time. In 

contrast, for large battery energy capacities, the percentage of trips which fully deplete 

the battery is relatively small for either strategy. Hence, the two strategies produce 

almost equivalent performance characteristics for large battery energy capacities. 
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Figure 3.8 Box and whisker plots of (a) operating cost (USD per 100 km) and (b) energy 
consumption (MJ per 100 km) distributions for each battery size and control strategy 
configuration. The symbol (x) denotes the average value of each distribution. Whisker 
lengths are limited to 1.5 times the interquartile range. 

These results are in agreement with prior claims tha t a blended strategy should 

enable the use of smaller batteries [140, 141, 143], although in this case the result 

applies to bat tery energy capacity, whereas the prior claims are predominantly in 

reference to bat tery power capacity. Moreover, this work justifies those claims in 
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a more rigorous manner by developing blending strategies through optimal control 

theory. Furthermore, the differences between blending and CDCS are evaluated across 

a distribution of drive cycle behavior and daily trip times, instead of a small set of 

certification cycles. 

3.3.3 Impact of Varying Daily Trip Distance 

This section focuses on the performance of both control strategies across varying daily 

trip lengths. Namely, we seek to answer the following two questions: (1) Given a fixed 

daily trip distance, what battery capacity minimizes energy costs? (2) For what range 

of trip distances does blending provide the greatest improvements over CDCS? The 

simulation framework used to answer these questions has one important difference 

with the preceding section: Random drive cycles are simulated for a finite set of trip 

distances, as opposed to randomly sampled daily trip durations from the distribution 

described in Section 2.3. 

Given a finite set of trip distances, the average operating cost as a function of 

battery energy capacity is demonstrated in Fig. 3.9, for the blended control strategy. 

Note that the average is taken over a set of random drive cycles generated by the 

Markov chain in Section 2.3 (where the simulation is terminated at the specified 

distance). For each trip distance, operating cost performance is a convex function of 

battery energy capacity. That is, performance decreases as battery energy capacity 

increases, up to a critical energy capacity. Beyond this energy capacity, operating 

cost increases slightly with storage capacity. This slight increase is because vehicle 

efficiency declines with added battery weight, which is essentially unused for the given 

trip distance. 

The results analyzed in the preceding paragraph can also be leveraged to investigate 

the relative advantages of blending over CDCS across varying daily trip distances. 

Figure 3.10 provides the percentage improvement in average operating cost perfor

mance of applying a blended strategy over CDCS. In general, blending demonstrates 

the greatest improvements for small battery energy capacities and long trips - up to 

5%. This is because blending rations electric energy storage rather than applying 

aggressive depletion. The range of battery energy capacity for which blending provides 

an advantage over CDCS increases as trip distance increases. However, beyond a 

certain battery size, there is a small probability that either strategy will fully deplete 

the battery and therefore differences between blended control and CDCS are small. 

In fact, for large batteries blending provides slightly worse performance than CDCS 
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Figure 3.9 Average operating cost (USD per 100 km) for varying daily trip distances and 
battery energy capacities, for the blended strategy. 

because blending applies more engine power during charge depletion to conserve 

electric energy. Nevertheless, Fig. 3.10 is useful for understanding the ranges of trip 

distances and bat tery energy capacities where blending provides significant benefits 

over the standard CDCS control strategy. 

3.3.4 Impact of Varying Energy Prices 

To this point we have reported results corresponding to an energy price ratio of (3 = 0.8 

(equivalent to the gasoline price per gallon being 27.6 times the electricity price per 

kWh - for example, 2.76 USD per gallon of fuel and 0.10 USD per kWh of electricity). 

This parameter is explicitly accounted for in both the control design procedure and 

simulation results. However, this value varies both temporally (e.g., by year) and 

spatially (e.g., by geographic region). To highlight the volatility of this parameter, 

consider the history of average energy price ratios in the United States since 1973 

[6], shown in Fig. 3.6. The value of (3 has clearly changed significantly over the past 

35 years due to shifts in both oil and electricity prices. This motivates the need 

to understand how this parameter impacts the interdependency of optimal power 

management and battery energy capacity. 
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Figure 3.10 Impact of daily trip distance on operating cost savings of applying a blended 
strategy relative to CDCS. 

Consider the operating cost savings (given in terms of percentage) of applying 

a blended strategy over CDCS in Fig. 3.11. Since the proposed simulation method 

produces a distribution of operating cost savings for each energy price ratio, Fig. 3.11 

provides the average values calculated across all the drive cycles. 

Two key observations are made from the results depicted in Fig. 3.11. First, the 

benefits of blending over CDCS is more significant for smaller battery energy capacities, 

across all values of the energy price ratio. This result matches the trends identified 

in the previous section and quantifies the benefits across varying energy price ratios. 

Secondly, the benefits of applying a blended strategy over CDCS become notably 

more significant for smaller values of /?, i.e. as fuel becomes less expensive relative 

to fixed electricity prices. This result makes intuitive sense for the following reason: 

Recall that the blended approach explicitly accounts for the cost of fuel and electricity, 

and therefore optimally mixes these energy sources in a manner that minimizes total 

energy consumption costs. In the case of decreasing values for the energy price ratio, 

blending utilizes increasing amounts of engine power and fuel. As a result, the optimal 

fuel/electricity mix deviates further from the CDCS strategy, which always at tempts 

to consume electric bat tery energy first. The final result is tha t blending produces 
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Figure 3.11 Impact of energy price ratio on operating cost savings of applying a blended 
strategy relative to CDCS. Recall the definition of energy price ratio provided in (3.10). 

significantly lower operating cost values relative to CDCS for small energy price ratios. 

3.4 Optimal Blending to Minimize SEI Layer 
This section examines the performance of supervisory control algorithms tha t opti
mally tradeoff SEI film growth with energy consumption cost. To obtain a measure 
of controller performance across a variety of drive cycle behavior (as opposed to 
single certification cycles), we apply the process outlined in Fig. 3.12. This can be 
summarized as follows: 

1. The set of admissible controls is determined for each state using the electro

chemical model. 

2. The Pareto optimal set of controllers is synthesized via the stochastic dynamic 

program formulated in Section 3.1 by sweeping a and considering the reduced 

equivalent circuit model. 

3. A library of 1,000 drive cycles is generated from the Markov chain described in 

Section 2.3. 

4. Each controller in the Pareto set is simulated for all drive cycles in the library 
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Figure 3.12 Flowchart of the design and analysis procedure. Note that the full electro
chemical model is used to compute the admissible control set and simulate the closed-loop 
system after the SDP problem has been solved. The reduced equivalent circuit model is 
used to solve the SDP problem, since it contains only one state. 

with the full electrochemical model. 

5. Performance characteristics, including film growth and energy cost, are recorded. 

Subsequently, we analyze three controllers of interest from the Pareto set on single 

certification cycles to obtain a fundamental understanding of how to optimally tradeoff 

battery health and energy consumption through proper SOC management. 
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Figure 3.13 Number of admissible controls for each state, sorted in descending order. 
Sets of admissible controls for three examples states are shown on the right. 

Admissible Controls 

At this point we wish to highlight Step 1, where the set of admissible controls is 

determined for each state using the electrochemical model. This step is critical for 

three reasons. 

First, computing admissible controls for each state off-line guarantees that the con

straints are always satisfied. In other words, they are implemented as hard constraints. 

A typically alternative in hybrid vehicle power management applications is to apply 

penalty functions when constraints are violated - a soft constraint approach [37, 73, 53]. 

The latter has been shown to cause numerical difficulties due to interpolation leakage 

of the penalty function values into the admissible region [144]. 

The second critical reason for computing admissible controls offline is that it ensures 

the controllers satisfy the constraints on the full electrochemical model, despite being 

68 



www.manaraa.com

optimized on the reduced equivalent circuit model. This point is crucial for integrating 

electrochemical models into stochastic dynamic programming - a key contribution of 

this dissertation. 

Finally, computing admissible controls offline can dramatically reduce the control 

space one needs to consider during the online SDP calculation. To demonstrate this 

point Fig. 3.13 displays the number of admissible controls for each state, sorted in 

descending order. Note that there are four state variables, quantized at 20 levels each, 

resulting in 160,000 states. The two control inputs are also quantized at 20 levels, 

resulting in 400 possible controls. Figure 3.13 demonstrates that 86% of the control 

space is reduced through this offline calculation, a significant reduction to say the 

least. The plots on the right-side of Fig. 3.13 further demonstrate the non-trivial 

nature of determining admissible controls for each state. That is, these three plots 

show the exact sets of admissible controls for three example states, which contain 300, 

200, and 100 admissible controls, displayed respectively from top to bottom. 

The results from computing the admissible controls are saved into a database, 

which SDP uses to determine the set over which to optimize controls for each state. 

This offline calculation does not depend on the specific optimization objective, and 

can thus be performed once. As such, the database of admissible controls are used to 

minimize SEI layer growth and Ah-processed in the subsequent sections. 

3.4.1 Energy Consumption vs. Film Growth 

Performance results for the Pareto set of controllers that optimally tradeoff SEI layer 

film growth (per battery cell) with energy consumption costs are presented in Fig. 

3.14. This is achieved by sweeping the weighting parameter a in (3.6) from zero to 

one. A distribution of performance metrics is obtained for simulating the controllers 

across the entire library of drive cycles. As such, Fig. 3.14 indicates the average 

values as well as the 25/75% quantile ranges. The horizontal axis reports the SEI 

layer growth resistance per km, while the vertical axis indicates energy economy in 

km/USD (analogous to miles per gallon). The utopia point is located in the upper-left, 

which indicates the individually achievable optimal performance metrics [145]. 

This plot indicates that, indeed, there exists a fundamental tradeoff between 

anode-side SEI film growth in battery packs and energy consumption costs. Namely, 

average SEI film growth can be reduced by 20% relative to an "energy-only" controller, 

but at the sacrifice of a 72% decrease in average energy economy. The reason the 

distributions of film growth stretch left of the mean is related to the distribution of 
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Figure 3.14 Pareto set of optimal controllers for anode-side film growth and energy 
economy, simulated across a library of 1,000 randomly generated drive cycles. Stars (*) 
indicate the average values and the dashed lines (- -) are the 25/75% quantile range. 

trip length. As trips become longer, more bat tery SOC is depleted and film growth 

rate decreases. Normalizing this effect against longer distances traveled produces a 

long tail toward the left side of Fig. 3.14. 

One method for analyzing the combined optimality of each controller is to consider 

the relative optimality analysis depicted in Fig. 3.15. This figure reports on the 

optimality of each controller with respect to the Utopia point defined in Fig. 3.14. 

Note that the relative optimality is nearly (but not exactly) a monotonic function of 

controller weighting a. This is because the stochastic dynamic programming procedure 

optimizes with respect to the reduced order equivalent circuit battery model, whereas 

these results are calculated from the full electrochemical model (see Fig. 3.12). One 

can see that the controller corresponding to a = 0.84 provides the minimum 2-norm 

distance from the Utopia point, and in this specific sense, is the best balance between 

both objectives. In the following analysis, we discuss the two extreme solutions (a = 0 
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and a = 1) and the "best mix" (a = 0.84). 

3.4.2 Analysis and Discussion 

To acquire physical insight into the structural properties of the optimal controllers, we 

analyze three solutions from the Pareto set, a = 1.0,0.84, and 0. Generally speaking 

these respectively correspond to emphasizing energy only, balancing energy and SEI 

layer growth, and SEI layer growth only. The controller corresponding to a = 0.84 is 

chosen because it represents the best balance between both objectives, measured in 

terms of the normalized 2-norm distance from the utopia point in Fig. 3.14. These 

controllers are simulated on two concatenated FTP-72 cycles. Performance results for 

various other drive cycles are reported in Table 3.2. 

Figure 3.16 demonstrates the SOC trajectories for each controller. The energy-only 

controller (a = 1.0) conservatively rations bat tery charge by blending engine and 

battery power. This process reduces the time spent in charge sustenance mode, where 

fuel must be consumed to meet power demand and sustain battery charge [42]. Put 

simply, charge sustenance mode is extremely expensive relative to charge depletion, 

and should be avoided, if possible, to reduce energy consumption cost. If the drive cycle 
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Figure 3.16 SOC trajectories for SEI film growth (a = 0), mixed (a = 0.84), and energy 
(a = 1.0) optimal controllers simulated on two concatenated FTP-72 cycles. 

were known beforehand, the optimal strategy would blend engine and battery power 

so bat tery SOC reaches its minimum level exactly when the trip terminates. Recall 

tha t trip length distributions are directly implemented into the problem formulation 

through the terminal state of the Markov chain, as described in Section 2.3. Hence the 

controller is trip length-conscious. In contrast, the SEI layer-only controller (a = 0) 

aggressively depletes bat tery charge to avoid the high SEI film growth rates seen in 

Fig. 2.6. This results in a strategy tha t mimics electric-only operation, followed by 

charge sustenance. Interestingly, the mixed (a = 0.84) controller's characteristics are 

more similar to a = 0 than a = 1 during the first 300 seconds (see the zoom-in in 

Fig. 3.16. The reason can be understood by analyzing the gradient properties of the 

film growth map. Namely, the steep gradient at high SOC values indicates significant 

benefits in accumulated film growth can be achieved by quickly depleting charge. This 

is in spite of heavily weighting energy costs over battery health, since instantaneous 

energy cost as defined in (3.7) is relatively insensitive to SOC. Conversely, SEI film 
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Figure 3.17 Operating points on anode-side SEI film growth rate map for SEI layer 
(a. = 0), mixed (a = 0.84), and energy (a = 1.0) optimal controllers simulated on two 
concatenated FTP-72 cycles. 

growth is very sensitive to SOC. Mathematically this is shown from (3.7)-(3.8) 

dc film 

dSOC 

d8fUm(I,SOC) 

dSOC 

> 
da 

energy 

dSOC 
QbattSdC dVoc(SOC) 

> -Ctelec 
Vgrid dSOC 

0 

(3.23) 

(3.24) 

where the RHS of (3.24) is approximately zero because a typical Li-ion bat tery has 

nearly constant open-circuit voltage with respect to SOC, in the allowable SOC range. 

This result is clearly illustrated in Fig. 3.17, which indicates the operating points 

of each controller superimposed on the film growth map from Fig. 2.6. Observe that 

adding a small consideration for SEI layer growth (e.g. a = 0.84) to an energy-only 

objective (e.g. a = 1.0) dramatically changes the operating point behavior. Namely, 

it induces the controller to escape high film growth rate regions by depleting battery 

charge quickly until it reaches a lower SOC level (between 50-60%). However, it leaves 

enough available battery energy to blend power until the trip ends, without entering 

charge sustenance (near 25% SOC). In summary, a PHEV power management strategy 

that considers SEI film growth in addition to energy consumption will, in general: (1) 

deplete battery charge quickly to reduce film growth rates, then (2) blend engine and 

battery power to avoid charge sustenance, at least for the models considered in this 

dissertation. 

73 



www.manaraa.com

Table 3.2 Performance over various Certification Cycles 

Drive 
Cycle 

3xFTP 

3xUS06 

6xSC03 

3xHWFET 

3xLA92 

Energy Economy [km/USD] 
SEI 

a = 0.00 

46.5 

37.1 

50.0 

44.9 

39.6 

Mixed 

a = 0.84 

187 

80.7 

170 

173 

150 

Energy 

a = 1.00 

434 

88.3 

312 

266 

263 

Film Growth [/ift/ 

SEI 

a = 0.00 

14.0 

5.25 

13.2 

5.15 

10.6 

Mixed 

a = 0.84 

17.9 

6.01 

16.2 

6.48 

13.0 

m 2 /km 
Energy 

a = 1.00 

22.4 

6.58 

20.0 

7.96 

16.2 

3.4.3 Sensitivity to Film Growth Model Parameters 

The property that batteries degrade faster at higher SOC strongly influences the 

results presented here. This fact motivates an analysis of how sensitive the gradient 

properties of the film growth map in Fig. 2.6 are to variations in the model parameters. 

Namely, are the gradient properties a fundamental physical property of the film growth 

mechanism, or a realization of the particular model parameters used in this study? 

The answer is the former, as shown by the following proposition. 

Propos i t ion 1. Consider a rested battery cell with constant concentration and poten

tial distributions, zero applied current, and hence zero intercalation current J\ = 0. 

Then the rate of anode-side film growth increases with cell SOC, 

dSflim 

d9a 
> 0 V 0 f l e [O, l ] (3.25) 

where 6a is the bulk state-of-charge of the anode, which we use as the definition 

of cell SOC. Moreover, the only model property necessary to ensure this result is 

that anode equilibrium potential is decreasing with SOC, dUrefta/d6a < 0, which is 

a thermodynamic electrochemical property of porous hthiated carbon electrodes [146]. 

Thus film growth rate is an increasing function of SOC, for a rested cell under no loads. 

Proof. First consider the Butler-Volmer equation for the anode. 

Ji = a0io,a sinh 
aaF 

RT 
Jx 

l̂,a ~ 02,0 ~~ Uref a Rfilm (3.26) 
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The following expression holds true if and only if Ji = 0 in (3.26). 

<t>l,a - h,a = Uref,a(9a) (3.27) 

The simplifying condition (3.27) enables us to analytically show dSf^m/dOa > 0 

through the following arguments. First we derive 5/^m as an explicit function of 9a. 

Then we show its derivative is positive. Rewrite (2.24) and (2.25) by lumping together 

parameters into positive constants C\, C2, C3, and then combine 

< W = CiC2exp[-C377s] (3-28) 

Use the definition of r]s from (2.18) and condition (3.27) to write 

Vs = Ua,ref(9a) ~ US)Tef (3.29) 

noting that the third term in (2.18) is dominated by the others and can be approximated 

as zero. Substitute ns into (3.29) 

$ film = CiC2 exp [ - C 3 (Uatref(9a) ~ US,ref)] (3.30) 

Now differentiate with respect to 6a 

d 
d9a \SfllmJ ~ 

[-C1C2C3eXp(-C3(Ua,ref(ea)) - UStref)} 
dUa. ref 

dd, a 

(3.31) 

The first term in brackets on the RHS of (3.31) is negative for all 6a, since the constants 

G\,C2, C3 are positive by definition and the exponential function is always positive. 

Hence, dSfum/d9a > 0 if and only if the second term in brackets in (3.31) is negative. 

That is, the equilibrium potential of the anode decreases with bulk anode SOC. This 

condition is a thermodynamic property of lithiated carbon electrodes [146]. Therefore 

(3.25) holds true, which completes the proof. • 

This result implies anode-side film growth rate increases as SOC increases ir

respective of the model parameters, at least for a rested battery under zero loads. 

Experimental validation of this result has been reported in the literature [106] and is 

currently underway in our laboratory. This evidence provides confidence in the trends 

and insights reported here. 
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In this study we focus on one particular battery degradation mechanism - anode-

side film growth. In truth a myriad of mechanisms exist that cause capacity fade in 

lithium-ion batteries, although film growth has been identified as one of the most 

significant [30]. A comprehensive review of these mechanisms can be found in [30] and 

the references therein. From a systems-level perspective degradation can be associated 

with SOC, temperature, depth of discharge, cycling, etc. Experiments identifying 

several of these relationships are currently underway in our laboratory. Nonetheless 

the application of an established degradation model [7] represents a reasonable first 

step toward health-conscious power management. 

3.5 Optimal Blending to Minimize Ah-Processed 

In this section we examine the performance of supervisory control algorithms that 

optimally tradeoff Ah processed with energy consumption cost. The analysis follows 

the exact same procedure outlined in the previous section (Section 3.4) and Fig. 3.12. 

In particular we analyze the Pareto frontier of optimal solutions and their relative 

optimality. For additional insight, we consider the controllers which optimize each 

objective individually and compare their performance on three concatenated US06 

cycles. 

3.5.1 Energy Consumption vs. Ah Processed 

Performance results for the Pareto set of controllers that optimally tradeoff Ah pro

cessed (per battery cell) with energy consumption costs are presented in Fig. 3.18. As 

before, this is achieved by sweeping the weighting parameter a in (3.6) from zero to 

one. A distribution of performance metrics is obtained for simulating the controllers 

across the entire library of drive cycles. As such, Fig. 3.14 indicates the average values 

as well as the 25/75% quantile ranges. The horizontal axis reports the Ah processed 

per km, while the vertical axis indicates energy economy in km/USD (analogous to 

miles per gallon). The utopia point is located in the upper-left, which indicates the 

individually achievable optimal performance metrics [145]. 

This plot indicates that a fundamental tradeoff also exists between reducing energy 

consumptions costs and Ah processed in battery packs, for PHEVs. Specifically, the 

average Ah processed can be reduced by 57% relative to an "energy-only" controller, 

but at the sacrifice of an 82% decrease in average energy economy. One method 
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Figure 3.18 Pareto set of optimal controllers for Ah processed and energy economy, 
simulated across a library of 1,000 randomly generated drive cycles. Stars (*) indicate the 
average values and the dashed lines (- -) are the 25/75% quantile range. 

for analyzing the combined optimality of each controller is to consider the relative 

optimality analysis depicted in Fig. 3.19. This figure reports on the optimality of each 

controller with respect to the Utopia point defined in Fig. 3.18. One can see that the 

controller corresponding to a = 0.85 provides the minimum 2-norm distance from the 

Utopia point, and in this specific sense, is the best balance between both objectives. 

3.5.2 Analysis and Discussion 

As before, we acquire physical insight into the structural properties of the optimal 

controllers by analyzing the two extreme solutions from the Pareto set, a = 0 and 

1.0. These two controllers corresponding to emphasizing minimum Ah-processed and 

minimum energy consumption cost, respectively. These controllers are simulated on 

two concatenated US06. 
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Figure 3.20 portrays the SOC trajectories for each controller. As before, the 

energy-focused controller rations bat tery charge such tha t the PHEV reaches the 

minimum SOC over the course of an average drive cycle. This effectively reduces the 

time spent in charge sustenance mode while completely utilizing the relatively cheap 

electric energy store. In contrast to the results shown in Fig. 3.16, the minimum 

Ah-processed controller severely limits high C-rates and therefore consumes a very 

small amount of battery energy (about 5% depth of discharge). 

This behavior can be understood further by analyzing the distribution of power 

demand on the engine and battery, depicted in Fig. 3.21. This figure elucidates how 

the minimum Ah-processed controller constraints the distribution of bat tery power 

demand to a small range around 0 kW, which limits the depth of discharge. The 

tradeoff is a larger number of high engine power occurrences, as shown in the top 

subplot of Fig. 3.21, to satisfy the total power demand. In contrast, the energy-focused 

controller experiences a broad range of bat tery power demand and a distribution of 

engine power more closely concentrated toward lower values, which decreases total 

energy consumption cost. Therefore, a PHEV supervisory control algorithm which 

a t tempts to minimize bat tery health degradation by reducing Ah-processed will be 

extremely cautious of using the bat tery as a depletable energy store. Interestingly 
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this action fundamentally opposes the key advantageous feature of a PHEV - the 

depletable battery pack energy store. 
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Figure 3.20 SOC trajectories for minimum Ah-processed (a = 0) and energy (a = 1.0) 
simulated on three concatenated US06 cycles. 

3.6 Summary 

This chapter examines health-conscious power management in plug-in hybrid electric 

vehicles through electrochemical modeling and stochastic control. The framework pre

sented here is the first integration of electrochemical modeling and stochastic control. 

First we consider the optimal blending problem without consideration for bat tery 

health. The results here demonstrate how blending maintains the engine operating 

points near the contours of greatest efficiency relative to CDCS. The battery size sensi

tivity analysis demonstrates that blending has greater impact as battery size decreases. 

Next, we formulate a multi-objective optimal control problem which optimally trades 

off bat tery health in terms of two aging metrics (SEI layer and Ah-processed) with 

energy consumption cost (fuel and grid electricity). The problem formulation includes 
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Figure 3.21 Distributions of engine and battery power for minimum Ah-processed (a = 0) 
and energy (a = 1.0) simulated on three concatenated US06 cycles. 

two levels of battery model fidelity. The first is a reduced degrading electrochemical 

bat tery model for control optimization. The second is a full-order electrochemical 

model for constraint satisfaction and control validation. Throughout this chapter we 

apply a shortest path stochastic dynamic programming formulation. This enables us 

to directly encode real-world daily trip length distributions reported by the National 

Household Travel Survey [121] into the Markov chain drive cycle model. 

Analysis of the optimal power management algorithms indicates that an energy-

focused controller conservatively depletes SOC by blending engine and battery power. 

This reduces the time spent in charge sustenance mode, where relatively expensive fuel 

is required to meet driver power demand and sustain battery charge. An SEI-focused 
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controller aggressively depletes SOC, since the SEI layer grows faster at high SOC 

levels. For the models we study, a controller which considers both objectives will 

aggressively deplete SOC first, to reduce film growth rates, then conservatively blend 

engine and battery power to limit entry into charge sustenance mode. In the case 

of anode-side film growth, we have demonstrated this result is fundamental to the 

thermodynamic properties of the anode in the battery cell. An Ah-focused controller 

depletes SOC extremely conservatively since it avoids battery power demands with 

large magnitudes. 

The modeling, control design, and analysis procedure presented in this chapter 

represents a fundamental framework for analyzing power-management of systems 

with multiple energy stores/conversion devices, stochastic inputs, multiple objectives, 

complex physics, and state/control constraints. 
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Chapter 4 

Optimal Switching Control of 
Parallel Connected Batteries 

Recent advances in lithium ion battery modeling suggest unequal but controlled and 

carefully timed charging of individual cells may reduce degradation. This chapter 

compares anode-side SEI layer formation for a standard equalization scheme versus 

unequal charging through switches controlled by deterministic dynamic programming 

(DDP) and DDP-inspired heuristic algorithms. The control optimization utilizes a 

reduced order model for SEI growth, developed in Section 2.1.3. Using this model, we 

consider two cells connected in parallel via relay switches. The key results are: (1) 

Optimal unequal and delayed charging indeed reduces film buildup; (2) A near-optimal 

state feedback controller can be designed from the DDP solution and film growth rate 

convexity properties. Simulation results indicate the heuristic state-feedback controller 

achieves near optimal performance relative to the DDP solution, with significant 

reduction in SEI growth compared to charging both cells equally, for several film 

growth models. Moreover, the algorithms achieve similar SEI reduction on the full 

electrochemical model. These results correlate with the convexity properties of the 

film growth map. Hence, this chapter demonstrates that controlled unequal charging 

may indeed reduce SEI growth in parallel connected batteries, given that certain 

convexity properties exist. Broadly speaking, these techniques introduce a new control 

paradigm for battery management systems which may significantly improve battery 

pack life. 

4.1 Bat tery Pack Charge Management Techniques 

Existing research on battery management systems (BMS) generally addresses three tiers 

of objectives. First, researchers have developed cell-to-cell charge equalization circuits 

that protect cells connected in series strings from over-charging or over-discharging 
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due to capacity imbalances [147, 148, 112, 111]. Second, researchers have developed 

thermal models and management systems to ensure cell temperature remains within 

an optimal efficiency range [103, 125, 104, 102]. These first two tiers usually consider 

phenomenological lumped parameter models of cells to protect them from abuse. The 

third tier of health-conscious BMS objectives considers electrochemical-based models, 

which can potentially predict physical degradation mechanisms with higher fidelity 

[149]. BMS algorithms within this tier are at a relatively nascent stage, since electro

chemical battery models are significantly more complex than their phenomenological 

counterparts. Our proposed heterogeneous charging scheme falls within this third tier 

of objectives. Specifically, we consider the potential advantages of allowing unequal 

charge values across modules connected in parallel, and allow flexibility in determining 

the timing of the charge process. The goal is to leverage this flexibility to suppress 

capacity fade. 

4.2 Problem Formulation 

The control objective is to determine the optimal switching sequence that minimizes 

the total resistive film growth in the bat tery pack described in Section 2, given a 

current trajectory, t0, known a priori. We formulate this as a finite horizon constrained 

optimal control problem 

N 

min J = > 
^ to 

/ _, 0~film(Zj,k, lj,k) + 9z(Zk) 

J = l 

+ajv | |z jv-0.95| |2 (4.1) 

subject to 

zk+1 = f{zk,ik) (4.2) 

ik = h(qk,i0ik) (4.3) 

zo = zlc (4.4) 
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where 

(<7i,g2) e { 0 , i } x { o , i } 

5 ( z f c ) = OLz 

"I 2 

Y^ max {0.05 — z%^k, 0, zhk — 0.98} 
i=l,2 

(4.5) 

Zk 

Ik 

Cty ^ max {2.0-
.1=1 ,2 

= [-Zl.fc ^2,A;] r 

= [«l,fc «2,fcj 

-^,fc,0,^,fe --3.6} 
2 

(4.6) 

(4.7) 

(4.8) 

where the function £/^m maps SOC and current to average film growth rate according to 

the relationship depicted in Fig. 2.6. The function gz(zk) denotes soft constraints that 

limit cell SOC and cell voltage to protect against over-charging and over-discharging. 

However, for the simulation described in this article, these constraints never become 

active due to the modest charging rate employed. A terminal constraint with weight

ing ajs is provided to ensure the battery pack charges to the SOC corresponding 

to the desired final voltage. The function f(zk, ik) represents the dynamic equation 

in (2.29)-(2.30). The function h(qk,i0tk) maps the switch position and battery pack 

current to cell current in (2.31)-(2.32). Finally, we impose a fixed initial condition zlc. 

To solve the optimization problem in (4.1)-(4.8), we re-express the equations as 

a dynamic programming problem by defining a value function as follows [115]: Let 

Vk(zk) represent the minimum total film growth from discrete time k to the end of 

the time horizon, given that the cell SOC in the present time step k is given by the 

vector zk. Then the optimization problem can be written as the following recursive 

Bellman optimality equation and boundary condition. 

Vk{zk) 

VN{zN_1) 

A^] = l 0film\Z],k, l],k) 

(91-92) I +gz{zk) + Vk+i(zk+1 
mm 

min {O;JV||Z/V 
(91,92) 

0.95||| } 

(4.9) 

(4.10) 

The above dynamic programming problem is solved via a full enumeration algo

rithm. That is, we compute a family of optimal trajectories for a set of fixed initial 

conditions. This approach enables us to analyze an ensemble of trajectories to gain 

insight on how DDP minimizes total film growth. 
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Figure 4.1 Time responses for optimal charging pattern identified by DDP, given a IC 
battery pack charge rate. 

4.3 Solution Analysis 

4.3.1 Analysis of Optimal Trajectories 

To acquire insight on the optimal switching sequence for minimizing resistive film 

growth, we consider a constant IC (2.3 A) charge rate applied to the bat tery pack. 

Note that while the bat tery pack experiences a constant current charge rate, the 

individual cells will have time-varying charge rates. Time responses for an initial SOC 

of 0.1 for each cell are provided in Fig. 4.1. Figure 4.2 demonstrates the optimal 

trajectories for a set of initial battery cell SOC conditions. These figures indicate that 

the optimal switching sequence follows a consistent pattern: 
1. Leave the bat tery pack uncharged for as long as possible. This minimizes 

the duration of t ime over which the pack's cells have large SOC values and, 
consequently, large film buildup rates. 

2. Charge the cell with greater initial SOC. 
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Figure 4.2 Optimal trajectories for various initial conditions, given a IC battery pack 
charge rate. 

3. Charge the cell with less SOC until both cells approximately equalize. 
4. Charge both cells together, at approximately equal current values, until the final 

state is reached. 

The key question is why does DDP identify the pat tern in Steps 2-4 above as the 

optimal switching sequence for minimizing film growth? 

4.3.2 The Energy Storage-Film Growth Tradeoff 

First, consider the result tha t film growth is minimized by leaving the bat tery pack 

uncharged for as long as possible. This is, film growth is minimized if battery packs 

are charged only immediately before use. This result was also found in a recent study 

on charge trajectory optimization for plug-in hybrid electric vehicles [150]. The reason 

for this result can be seen by observing that the film growth rate increases with SOC 

in Fig. 2.6. Therefore, maintaining each cell in a low SOC reduces the overall film 

buildup. However, this requires a priori knowledge of when the battery pack will be 
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Figure 4.3 Convexity analysis of spatially-averaged film growth rate for zero applied 
current. 

used. Moreover, if the battery is discharged sooner than expected, only a fraction of 

the total energy capacity is available for use. This suggests a fundamental tradeoff 

between electric energy storage and reducing anode-side film growth. 

4.3.3 Convexity Analysis of Film Growth Rate 

To answer the fundamental question of why DDP identifies the particular charging 
pattern described above, let us focus on the switching pattern exhibited by the optimal 
solution when charging does occur. Consider the film growth rate for varying SOC and 

zero current input, as portrayed in Fig. 4.3. For small SOC values, 5flim is concave. 
Along this portion of the curve, the total film growth rate for two cells at different 
SOC values is less than the total film growth rate for two cells at the same SOC value. 
However, for large SOC values <5/^m is convex. This implies that the total film growth 
rate for two cells at different SOC values is greater than the total film growth rate for 
two cells at equal SOC values. If one assumes the solution is infinitely greedy, these 
observations for reducing film growth can be applied as follows: 

1. In the concave region of Sfzim, drive the individual SOC values apart. 

2. In the convex region of ~5flim, equalize the individual SOC values. 

In other words, charge each module one-by-one through the concave region and then 

charge them all simultaneously. 
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Figure 4.4 DDP-inspired heuristic rule for charging, with optimal state trajectories 
superimposed. 

These results indicate tha t a reduction in total film growth can be achieved by 

allowing individual modules to have unequal SOC values - particularly within concave 

regions of film growth. Additionally, the optimal policy follows a consistent pat tern 

tha t may be closely approximated by a heuristic feedback control law, which leaves 

the battery discharged for the maximum allowable time. 

4.3.4 DDP-inspired Heuristic Control 

Inspired by these results, and the convexity analysis presented in Section 4.3.3, we 

examine a heuristic control scheme for minimizing film growth, depicted in Fig. 4.4. 

The advantage of a heuristic control scheme over the optimal trajectories computed by 

DDP is that the former can be implemented in a time-invariant feedback loop. Addi

tionally, one expects the heuristic scheme to achieve nearly optimal performance, due 

to the consistent pattern exhibited by the DDP solutions. The process of converting 

optimal trajectories into an explicit feedback map has been studied in the context of 
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DDP [36, 53] and model predictive control theory [151] before. These concepts are 

potentially applicable here, but a simpler less formal approach is used in this initial 

study. Note that the switching pattern defined by the heuristic rule should not be 

initiated until the last possible opportunity. In this example, each cell has a 1.8 A-h 

charge capacity and thus the total pack charge capacity is 3.6 A-h. Therefore charging 

both cells from 0.1 SOC to 0.95 SOC at a IC (1.8 A) rate requires about 100 minutes. 

As a result, we initiate the heuristic charging scheme 100 minutes prior to the final 

time. 

The design of the heuristic control law follows two steps: First, we simulate the 

optimal trajectories from a family of initial conditions, such as shown in Fig. 4.2. 

Second, we identify regions of the state-space corresponding to a certain switch config

uration. For regions in which the optimal state trajectories do not enter, we select 

a switch configuration that steers the state toward an optimal trajectory. This step 

is required, because for the IC charge rate input studied here, feasible trajectories 

do not cover the entire state-space. The final result of this procedure is depicted in 

Fig. 4.4, where several optimal state trajectories are superimposed on the proposed 

heuristic rule. Note how the heuristic controller follows the general guidelines of SOC 

separation and equalization in the respective concave and convex regions of Fig. 4.3. 

4.4 Comparative Analysis and Sensitivity Studies 

To evaluate the performance of the proposed heuristic controller, we compare it to 

the optimal DDP-based and standard equalization schemes (i.e. both switches closed 

during charging). We perform this study by simulating the closed loop battery pack 

degradation control system for a IC (2.3 A) constant current charge rate cycle. This 

study is performed on both the equivalent circuit model and static map of film growth 

rate (which was used for optimization, and henceforth is referred to as the "Control" 

model) and the full electrochemical model. In both cases the initial cell SOC values 

are 0.1 each. In practice, the standard charge method is to apply constant current to 

every cell in the pack until the voltage reaches a maximum value, then the voltage is 

held constant at this maximum value until the applied current reaches some minimal 

level. This is known as a constant current, constant voltage (CCCV) charge cycle 

[7]. Here, we only investigate the potential improvements incurred during the period 

when the cells charge up to a maximum voltage limit, corresponding to 0.95 SOC 

in our simulations. Subsequently, we report on similar results obtained for constant 
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Figure 4.5 SOC trajectories for each control scheme, superimposed on the heuristic control 
map. 

current discharge inputs. Finally, we analyze optimal switch patterns for alternative 

film growth maps, created using different assumption sets or model parameters. The 

latter analysis is motivated by the fact that accurately modeling aging in lithium 

batteries is extremely difficult - due to the extensive array of degradation mechanisms 

and materials within lithium-ion batteries. Regardless of these differences, the link 

between convexity properties and unbalanced cells remains in our studies. 

4.4.1 Control Model Charge Cycle Simulation 

The cell SOC trajectories for each control scheme simulated on the Control model are 

provided in Fig. 4.5, superimposed on the heuristic rule. Observe that the standard 

charging scheme maintains each cell at equal SOC values as the battery pack charges. 

In contrast, the trajectories corresponding to DDP and the heuristic rule follow tra

jectories similar to Fig. 4.2 and 4.4. Namely, both methods charge one cell at a 

time in the concave region of 5flim, and then apply charge equalization in the convex 
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Figure 4.6 Time responses for each control scheme. 

region of SfUm- Also observe tha t trajectories for DDP and the heuristic controller 

match closely, indicating that the proposed heuristic controller closely approximates 

the optimal solution for the trajectory shown here. 

Time responses for the cell SOC, current, and battery pack voltage are provided 

in Fig. 4.6. Here we see that the heuristic rule is initiated approximately 50 minutes 

into the simulation, allowing 100 minutes of charging time. Figure 4.6(a)-(c) further 

demonstrate how closely the heuristic controller and DDP solution match, with respect 

to time. Since the standard method initiates charging immediately, the cells remain 

idle at 0.95 SOC once charging is complete. This is important because film builds up 

at a faster rate for high SOC relative to low SOC, which is the intuitive reason why 

delayed charging significantly reduces total film buildup. The impact of this property 

can be seen in Fig. 4.6(c). Figure 4.6(b) demonstrates each cell's voltage, which 

increases only when that particular cell is charging. Note that all schemes maintain 
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Figure 4.7 Film Buildup for each control scheme, simulated on the control model and 
full electrochemical model. 

the cell voltage within the safety range of 2.0V to 3.6V. 

4.4.2 Film Buildup Validation on Full Electrochemical Model 

To this point, all simulation results have been performed on a reduced equivalent 

circuit model and static film growth rate map in Fig. 2.6 used for control optimization. 

In this subsection we study (1) if optimal switching indeed reduces film buildup for a 

high-fidelity electrochemical battery model, and (2) if the static approximation of film 

growth reasonably matches the film model prediction. Towards this goal, we apply 

all three controllers (standard, DDP, and heuristic) on the full electrochemical model 

(Full). 

The aggregated film buildup for the Control and Full models, simulated using 

each control scheme, are provided in Fig. 4.7. This figure indicates that the DDP 

and heuristic control schemes indeed reduce film buildup on the full electrochemical 

model, despite being synthesized for the Control model. Specifically, the open-loop 

DDP control and closed-loop heuristic controller reduced buildup by 49.5% and 48.7%, 

respectively. Moreover, the total film growth predicted by the Control model differ 

from the Full model by less than 10% for all control schemes. Therefore, we conclude 

that the reduced order model, taking the form of a static nonlinear map, enables the 
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accurate minimization of film growth for the charge cycles studied here. 

4.4.3 Performance Results 

A comparison of the performance for each control scheme is provided in Table 4.1. 

For the 2.3A rate charge cycle studied in this article, the heuristic controller produces 

an additional 20 /xf2/m2 (0.8%) of resistive film buildup over the DDP solution on 

the full electrochemical model. Hence, the heuristic scheme exhibits nearly identical 

performance to the optimal control design. Both DDP and the heuristic controller 

reduce film buildup by about 50%, for this charge cycle. It is important to note that 

the reduction in film buildup is a function of the particular charge cycle and time 

horizon. That is, cycles that remain within the concave region of 8fum may experience 

greater improvement, because the switched scheme proposed in this article has the 

greatest advantage in this domain. Moreover, the bulk of film reduction occurs due to 

delaying the charging process to the end of the time horizon. For the example studied 

here, 48% of film buildup reduction is due to delaying charging until the final 100 

minutes. 

4.4.4 Optimal Trajectories for Discharge 

Throughout this chapter we have considered optimally charging battery cells in parallel 

with relay switches to minimize total film growth - under charging events only. Here 

we consider constant current discharge events. The problem is formulated exactly as 

before, except now we apply a 2.3A discharge current input. The optimal switch, SOC, 

and voltage trajectories are provided in Fig. 4.8, with the battery pack initialized at 

95% SOC for each cell. Optimal SOC trajectories for various initial conditions are 

provided in Fig. 4.9. Under a discharging scenario, these results indicate the optimal 

constant current discharging trajectories follow a consistent pattern. 
1. Discharge the pack immediately. This moves the system away from regions of 

fast film growth - so less interfacial film accumulates over time. 
2. Equalize both cells as they discharge. 
3. Continue to discharge both cells at equal charge levels, until a certain point. 

4. Discharge each cell individually until the battery pack is fully discharged. 

In essence, these discharge trajectories follow the optimal charge trajectories back

wards. Moreover, the breakpoint between charge equalization and unequalization is 

approximately the same - 60% for both cells. Convexity arguments for infinitely greedy 

trajectory optimization solutions can be applied, once again, to interpret these results. 
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Figure 4.8 Time responses for optimal discharging pattern identified by DDP, given a IC 
battery pack discharge rate. 

Hence, allowing unequal charge levels in battery management systems may provide 

long-term health benefits when concavity properties exist in the aging mechanics. 

4.4.5 Sensitivity to Alternative Film Growth Parameteriza
tions 

Anode-side film growth has been recognized as a significant contributor to lithium-ion 

battery health degradation [30]. However a plethora of other difficult-to-model aging 

mechanisms can contribute to capacity and power fade. Moreover, modeling and accu

rately parameterizing these models across a wide range of lithium-ion cell chemistries 

and manufacturers can be difficult. This motivates the sensitivity analysis presented 

here. Specifically, we consider alternative film growth maps to evaluate the generality 

of unbalanced charging to varying model assumptions and parameterizations. 

The first map, shown in Fig. 4.10(a), is equivalent to Fig. 2.6 except we enforce 
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Figure 4.9 Optimal trajectories for various initial conditions, given a IC battery pack 
discharge rate. 

Assumption 2 of [7] which states that film growth occurs only during charging events, 

i.e. zero growth during rest and discharge conditions. The optimal charge trajectories 

for a IC constant current rate are shown in Fig. 4.11(a). In this case the optimal 

solution charges each cell individually and in succession. This result can be understood 

by noting that one cell charged at IC and the other at rest (no growth) produces 

less total film growth than two cells charged simultaneously at 0.5C. Also note that 

although Fig. 4.11(a) shows a delayed charging strategy, delaying charging provides 

equivalent film growth as immediate charging since zero film growth occurs during 

rest. Therefore when Assumption 2 of [7] holds true, unbalanced charging provides 

a 53% reduction in total film growth, which is a greater reduction from unbalanced 

charging when using the original film growth map. 

The second map, shown in Fig. 4.10(b), is based upon the same model equations 

used for Fig. 2.6 but with an alternative parameter set. This parameter set has 

been identified to produce capacity fade trends that match the manufacturer's cycling 

95 

Trajectory 
• Initial Condition O O O K\A 

s~—0—* 
(£- • 

0.2 0.4 0.6 0.8 



www.manaraa.com

o 
CD 

<r 0.6-NE 
^ 0.5-

<D 
15 0.4-
CC 
sz 
% 0.3-
o 
° 0.2-
E 
iZ 
CU 0 . 1 -
D) 
CD 
i _ 

§> oJ 

M 

< ^ : ^ ^ g -10 ^ ^ 
-5 

Current [A] 

Current [A] 

-5 0 

Figure 4.10 Film growth maps for alternative electrochemical model parameterizations: 
(a) No film growth occurs during discharge or rest conditions, which follows Assumption 2 
of [7]; (b) Preliminary parameterization to match the manufacturer's cycling and storage 
performance data. 

and storage da ta [150]. The two parameter sets used for each map are provided in 

Appendix D. The optimal charge trajectories for a IC constant current rate are shown 

in Fig. 4.11(b). Unlike the previous two cases the optimal solution does not unequalize 
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the cells' charge levels. This result can be interpreted through the convexity arguments 

of Section 4.3.3 by observing tha t Fig. 4.11(b) contains no concave regions. Thus 

charge balancing minimizes film growth. However, delayed charging still provides 

benefits by maximizing the time spent to low SOC levels, where film growth is slow. 

4.5 Summary 

This chapter investigates bat tery health management in Li-ion bat tery packs using 

relay switches for modules connected in parallel. To facilitate control design and 

analysis, we consider the electrochemical battery cell model with irreversible solvent 

reduction reaction dynamics at the anode, developed by Ramadass et. al. [7] from 

Chapter 2. From this high fidelity model, we approximate film growth rate as a 

static map that functionally depends on cell SOC and applied current. Using this 

map, we formulate an optimal control problem to minimize total bat tery pack film 

growth for a constant current charge trajectory. Inspired by the optimal trajectories, 

and the convexity properties of the film growth map, we design a heuristic rule base 

that produces nearly optimal performance. Further optimization results for constant 

current discharge trajectories and alternative film growth models demonstrate the 

generality of charge unequalization to varying input profiles, model assumptions, and 

parameterizations. 

The key result demonstrated by this work is that health degradation due to film 

growth can be reduced by: (1) Allowing bat tery modules connected in parallel to 

attain unequal SOC values when concavity features exist; and (2) Delaying charging 

until immediately before discharging. Indeed, the optimal solution approximately 

separates SOC in the concave region and equalizes SOC in the convex region of film 

growth rate at the end of the time horizon. This process can be implemented using 

a heuristic static feedback controller designed from optimal trajectories computed 

via dynamic programming. Individual control of module SOC is achieved via relay 

switches typically used for safety precautions. Within each module, individual cell 

SOC may be equalized via traditional switched capacitor circuits [111, 112] to protect 

against over-charging or over-discharging. Simulation results indicate this approach 

may significantly reduce total battery pack film growth, if one can identify concavity 

features in the degradation performance map. This motivates future work focused 

in two directions. First, experimentally identifying a data-driven degradation map 

similar to Fig. 2.6 may enable significant improvements in lithium ion battery lifetime 
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through controlled unequal charging schemes. This effort is currently underway within 

the laboratory using the multi-channel tester described in Section 2.1.3 and Fig. 

2.7. Second, experimental verification of these algorithms designed from data-driven 

degradation models will provide the ultimate proof-of-concept. Controlled switching 

equipment has already been designed and fabricated for this purpose, as shown in Fig. 

4.12. 
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Table 4.1 Controller Performance Comparison on Control Model and Full Electrochemical 
Model. 

Control 
Scheme 

Standard 
DDP 
Heuristic 

Control Model 
Resistance of 
Total Film 
Buildup 
3.20 mfi/m2 

1.55 mf2/m2 

1.56 mfi/m2 

Reduction 
in Film 
Buildup 
0% 
51.8% 
51.2% 

Full Model 
Resistance of 
Total Film 
Buildup 
2.95 mO/m2 

1.49 mfi/m2 

1.51 mfi/m2 

Reduction 
in Film 
Buildup 
0% 
49.5% 
48.7% 

Control vs. 
Full Error 

8.47% 
4.03% 
3.31% 
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Figure 4.11 Time responses of optimal charging trajectories for the alternative film 
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Chapter 5 

Conclusion 

5.1 Dissertation Summary 

The optimal control and electrochemical modeling framework proposed in this disserta

tion provides a systematic methodology for formulating, solving, and analyzing power 

management problems in battery-electric systems. In particular, we apply these tech

niques to lithium-ion battery pack health in plug-in hybrid electric vehicles (PHEVs). 

Moreover, the results demonstrate what control opportunities exist in PHEVs, given 

certain mathematical structural properties in the battery health degradation physics. 

As a consequence, the proposed algorithms may improve the useful life of battery 

packs. This is critically important for large-scale battery energy storage systems -

ranging from PHEVs to stationary grid-scale storage - where replacement cost, bulk, 

and cycle life are inhibiting factors associated with the uncertainty in maintaining 

operation within safe limits. 

In Chapter 2, three types of models were presented to study optimal PHEV and 

battery pack energy management. First, a dynamic model for the mechanical and 

electrical subsystems of a PHEV drivetrain was presented. These include inertial 

dynamics of the vehicle, engine, and motor/generators coupled together though a 

planetary gear set in a power-split configuration. Second, a Markov chain model 

for drive cycle dynamics was presented. This model has a special feature useful for 

capturing the distribution of daily trip lengths - namely a terminal state associated 

with "vehicle off". Finally, a detailed electrochemistry-based battery cell model was 

presented. This model captures Li-ion diffusion dynamics, intercalation kinetics, and 

electrode thermodynamics. This chapter also presents two important types of battery 

health degradation models: a physics-based solid electrolyte interphase (SEI) layer 

film growth model and an empirically-based "Ah processed" model. Together these 

models constitute the essential elements for studying supervisory control in PHEVs 
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and battery pack charge management. 

Chapter 3 investigates supervisory control algorithms that manage the tradeoff 

between battery pack health and energy consumption cost in plug-in hybrid electric 

vehicles (PHEVs). This study leverages both stochastic control theory and reduced 

electrochemical battery models to achieve its goal. First, a multiobjective stochas

tic control problem is formulated and solved via stochastic dynamic programming 

techniques. To contextualize the multiobjective battery-health conscious results, we 

first analyze the single objective control results which consider energy consumption 

cost only. This analysis describes the underlying advantages of a blended strategy 

versus charge depletion, charge sustenance. A sensitivity analysis is then performed 

to understand the impact of variations in battery pack size, daily trip length, and 

fuel/electricity price. Next we consider battery-health conscious power management 

control algorithms to minimize two quantitative metrics of capacity fade: SEI layer 

film growth and Ah processed. Control results for SEI layer film growth model quickly 

deplete battery SOC to escape the regions of fast film growth. Control results for the 

Ah-processed model are extremely tentative to consume battery energy, and therefore 

rely more heavily on engine power. 

Chapter 4 introduces a novel concept in the arena of battery management systems 

- charge unequalization. Specifically, this chapter analyzes the potential health advan

tages of allowing unequal yet controlled charge levels across batteries connected in 

parallel. Towards this goal, we consider two cells connected in parallel in which charge 

levels are controlled via relay switches. The control problem is then to determine 

the optimal sequence of switch configurations which minimize the total battery pack 

SEI layer film growth. In general the optimal solutions unequalize SOC at low values 

and equalize SOCH at high values. This result is directly related to the convexity 

properties of SEI layer film growth. To analyze the impact of variations in the battery 

health model, we consider two alternative SOH degradation models. Ultimately, we 

find the existence of concavity in the SOH model is what leads directly to charge 

unequalization. 

In summary, the research reported in this dissertation advances knowledge on 

managing power and energy flow in energy storage and conversion systems by com

bining optimal control and electrochemical battery models, for this first time. This 

dissertation has demonstrated this is critically important for enhancing the useful 

battery lifetime, replacement costs, and power efficiency in energy storage systems. In 

particular, these developments take steps towards increasing the wide-spread adoption 

of lithium-ion batteries for systems in which energy storage is the linchpin enabling 
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technology. 

5.2 Summary of Contributions 

This dissertation provides four distinct and original contributions toward optimal 

energy management control for Li-ion battery health in PHEVs. 

1. A coupled PHEV powertrain and electrochemistry-based Li-ion battery model 

was presented for supervisory control design studies. Although this model is 

generally too complex for solving optimal control, it provides a high fidelity 

platform to test and analyze controllers based upon reduced order models. An 

experimental battery-in-the-loop test system was also developed to identify the 

parameters of the battery model. (Chapter 2) 

2. A multi-objective stochastic optimal control approach was presented for study

ing the tradeoffs between energy consumption cost and battery health. This 

problem formulation utilizes the PHEV drivetrain model, the stochastic drive 

cycle model, and reduced-order battery models which include various SOH degra

dation metrics (i.e. SEI layer growth and Ah-processed). Mathematically, the 

problem is solved as a shortest-path stochastic dynamic program. Nonetheless, 

the framework is general and application to many scenarios characterized by 

multiple objectives, stochastic processes, and various levels of model complexity. 

(Chapter 3) 

3. A novel charge unequalization concept for battery pack management systems 

was proposed, designed, and analyzed. This concept explores the battery health 

benefits of allowing unequal yet controlled charge levels in batteries connected 

in parallel via relay switches. This concept is also generalizable to heterogeneous 

groups of batteries and more advanced interface topologies. (Chapter 4) 

4. Opportunities for novel control techniques were identified given certain mathe

matical structural properties in the battery degradation physics (i.e. slope and 

convexity). Clearly, these properties vary depending on the battery chemistry, 

mechanical design, manufacturing process, environmental conditions, operating 

scenarios, etc. The critical contribution of this thesis is to understand which 

properties are important to identify for enabling opportunities that enhance 

battery health through control. (Chapters 3 and 4) 
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5.3 Perspectives on Future Extensions 

The proposed control problem formulations and resulting algorithms make notable 

steps towards developing PHEVs with enhanced lithium-ion battery lifetime. Nonethe

less, there exist several opportunities to advance the work presented here. These are 

presented in three categories (modeling, power management, and battery management) 

described below. 

5.3.1 Electrochemical Modeling 

Temperature[152, 92, 94] and intercalation-induced stress [26] have critical impacts on 

the capacity and power fading characteristics of lithium-ion batteries. Several recent 

studies have constructed coupled thermo-electrochemical [153, 154] and mechanical-

electrochemical [26, 27, 155] models. Similar modeling efforts could be utilized in the 

battery-health conscious power management framework considered here. 

Opportunities exist for improved model reduction techniques for the PDAE-based 

electrochemical model. In particular, control-oriented "proper" models which balance 

predictive ability and simplicity are desired [156]. Towards this goal, there exists a 

burgeoning body of research on electrochemical battery model reduction. These tech

niques include the single particle model [157], residue grouping [65], modal expansions 

[158, 159, 160], volume averaging [158, 159, 67], constant electrolyte concentrations 

[67], proper orthogonal decomposition [161], electrode averaged models [162, 163], 

quasi-linearization and Pade approximations [99]. Nonetheless, these models are not 

completely commensurate with the broad spectrum of control design problems, thus 

motivating further research. 

5.3.2 Optimal Power Management 

Opportunities exist for improvements in the dynamic programming formulation. These 

include true multi-objective DP [128, 164], two-time scale DP [165, 166], and adaptive 

algorithms. These improvements are especially relevant toward power management of 

energy conversion systems where multiple objectives (e.g. energy consumption, battery 

health) and dynamic time scales (battery SOC, battery degradation) are present. 

Another interesting extension might provide a more thorough investigation of the 

interaction between control and design. Theoretical [167, 168] and applied approaches 

[169] provide interesting pathways. Moreover, the framework provided in this dis-
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sertation would be generally applicable to alternative hybrid design configurations, 

such as series hydraulic [117], parallel [37], series-parallel [48, 44], and output-split 

architectures [170]. 

Ultimately, PHEVs will interact with the electric grid while plugged in. Analysis, 

design, and control of the dynamic coupling between PHEVs and electric power 

systems remains a relatively open research question [171, 82, 83, 172, 173]. 

5.3.3 Battery Management 

In theory, the switching control concept for unequal charging proposed in this dis

sertation may mitigate the SEI layer film growth. It would be of great interest to 

demonstrate this result experimentally, using the battery-in-the-loop hardware pre

sented in Appendix A for example. Extensions of this concept might also consider 

more advanced power electronics topologies [174, 175] and adaptive algorithms. 

The battery management control algorithms considered in this work limit their 

scope outside of state/parameter estimation [149]. A future direction might consider 

output-feedback algorithms using recently developed control and estimation theory 

for linear parabolic PDEs [84, 176, 177]. 
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Appendices 
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Appendix A 

Fabrication of an Experimental 
Battery-in-the-Loop Test System 

Experimental data has been collected using a custom built battery tester. This tester 

is capable of highly transient current/voltage profiles and quickly switching between 

charging and discharging. These characteristics make it ideal for testing batteries 

under conditions similar to those experienced in PHEV battery packs. Additionally, 

this setup is capable of Hardware-In-the-Loop (HIL) experimentation which will be 

advantageous for future battery control and estimation studies [178]. 

This battery tester is a combination of three major components: an electric load 

(SLH-60-120-1200), a power supply (DCS20-50E), and a Real-Time (RT) controller 

and I/O board (DS1104). A photo of the battery tester was shown in Fig. 2.5. 

Figure A.l is a schematic of the setup where all signal lines are connected to the I/O 

board. The power supply and electric load handle battery charging and discharging 

respectively. The RT I/O board coordinates the electric load, power supply and 

switching board. In addition, the RT I/O board records sensor signals including 

voltage, current, and temperature, obtained from a custom built battery sensor board 

shown in Fig. A.2. The battery sensor board measures battery voltage through a 

voltage isolating differential op-amp and battery current via a bi-directional 20A Hall 

effect sensor (ACS714). An infrared thermopile (MLX90614) measures temperature. 

An electrical schematic and PCB layout of this board designed in EAGLE are shown 

in Fig. and , respectively. The switch board switches the setup between charging and 

discharging by swapping the battery's connection between the supply and load. A 

photo of this switch board is shown in Fig. A.5. The Schottky diode protects the 

power supply from absorbing battery energy. Using printed circuit boards (PCBs) has 

greatly improved the reliability and accuracy of the sensor electronics and switch/diode 

combination. A variety of signals interface the battery tester's components, including: 

analog, basic digital, PWM, SMBus, RS-232, and TTL. A list of the main components, 
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their manufacturers/model numbers, and general features are provided in Table A.l 

Table A.l Components of the Battery-in-the-Loop Tester 

Component Manufacturer/Model General Features 

Li-ion Battery Cells 

Power Supply (PS) 

Electronic Load (EL) 

Real-time control and 
measurement 

Voltage sensor 

Current sensor 

Temperature sensor 

Voltage regulator 

PS blocking diode 

PS-to-EL Relay 

Switch for PS-to-EL 
Relay 

A123 Systems 
ANR26650M1A 

Sorenson DSC20-50E 

Sorenson 
SLH-60-120-1200 
dSPACE DS1104 

Custom-built voltage 
isolating differential 
op-amp 

Allegro Microsystems 
ACS714 

Melexis MLX90614 
Infrared thermopile 
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Figure A . l Schematic of battery-in-the-loop hardware configuration. 
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Figure A.5 Custom designed switch/diode board used to switch between the power supply 
and electronic load The Schottkey diode blocks current from flowing into the power supply 
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Appendix B 

ME 499/599: Battery Systems and 
Control 

This appendix describes a new course on battery systems and control (ME 499/599). 

This course has served as a vehicle to disseminate knowledge obtained from this 

dissertation to the community - a unique feature of any doctoral research project. 

The objective is to provide to undergraduate, graduate, and professional students the 

technical skills necessary for developing a new generation of green vehicle technology. 

Emphasis is placed upon systems-level modeling, design, and control, oriented towards 

solving issues relevant for new vehicle development. The battery course specifically fo

cuses on system-level modeling, model order reduction from electrochemical models to 

surrogate models for load control, estimation, on-board identification and diagnostics 

for lithium-ion batteries. Ultimately this course aims to transform the automotive 

industry's workforce into the leading experts on vehicle electrification technologies. 

This course is a single component of a much broader educational program funded 

by a 2.5 million USD grant from the America Recovery and Reinvestment Act 

(ARRA) [11], supported through the Department of Energy. This program is entitled 

"Transportation Electrification Education Partnership for Green Jobs and Sustainable 

Mobility". Three universities within the state of Michigan are involved: the University 

of Michigan - Ann Arbor, the University of Michigan - Dearborn, and Kettering 

University. The project scope is to educate the next generation of engineers and 

workers and develop an outreach program in electrified transportation. An overview 

of the course and laboratory hierarchy within this program is provided in Fig. B.l. 

The program's scope spans vertically across educational levels (K-12 to professionals) 

and horizontally across academic disciplines (e.g. electric machines to green manu

facturing). The battery systems and control course represents one course within this 

larger effort. 

The course enrollment numbers for the Winter 2010 and Winter 2011 terms are 

113 



www.manaraa.com

Figure B.l Hierarchy of DOE ARRA Green Vehicle Technologies Educational Program. 

summarized in Table B.l. The on-campus students include undergraduates (ME 499) 

and graduate students (ME 599) from a wide variety of academic backgrounds such 

as mechanical engineering, chemical engineering, energy systems engineering, physics, 

electrical engineering, computer science, materials science, and mathematics). The 

off-campus students are generally working professionals in industry from organizations 

such as General Motors, Tesla Motors, Roush, Denso Corp., General Dynamics, U.S. 

Army TARDEC, etc. The breadth of backgrounds and experience demonstrates the 

broad impact of this course. 

Table B.l Course Enrollment to date. 

Term On-campus Off-campus Total 
Winter 2010 54 5 59 
Winter 2011 24 26 50 

The outline of this appendix is as follows: In Section B.l we discuss the course's 

primary goals and desired outcomes. In Section B.2 we provide an overview of the 

covered topics. Section B.3 describes some example homework problems, including 
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state-of-charge estimation and charge balancing control, to illustrate the course content. 

Finally Section B.4 summarizes the course objectives and planned improvements. A 

portion of the material presented here is based upon a previously published conference 

paper written by the course instructors [85]. 

B.l Course Goals and Outcomes 

Course Statement 

This course covers battery modeling, control and diagnostic methodologies associated 

with battery electric and battery hybrid electric vehicles. Emphasis is placed upon 

system-level modeling, model order reduction from micro-scale to macro-scale and 

surrogate models for load control, estimation, on-board identification and diagnostics 

for Lithium Ion batteries. The electrochemical, electrical, and transport principles 

for battery modeling are reviewed. Spatiotemporal models of coupled concentration, 

potential, and thermal phenomena are introduced. Simulation of the resulting partial 

differential equations using software tools will be introduced with selected topics on nu

merical issues. Model order reduction techniques, parameter estimation, filtering, and 

control theory will be covered and applied to state of charge estimation. Additionally, 

electric-circuit battery models, DC/DC converters, and other vehicle implementation 

issues of power management and balancing will be introduced. 

Desired Outcomes 

The desired course outcomes are constructed to align with the various levels of Bloom's 

Taxonomy [179] as follows: 

Knowledge: Students will be able to identify high-level technical challenges 

related to battery systems, especially as applied to vehicle electrification. 

Comprehension: Students will be able to distill high-level challenges into tech

nical, solvable engineering problems through strong fundamental understanding of 

battery systems. 

Application: Students will be able to apply their fundamental knowledge about 

battery physics and control systems to solve concrete problems. 

Analysis: Students will be able to analyze and model battery systems via theo

retical electrochemical physics and experimental characterization techniques. 
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Synthesis: Students will be able to formulate and design control algorithms to 

manage battery systems. These include state-of-charge estimation, thermal manage

ment, hybrid vehicle power-split control between engine and battery power, etc. 

Evaluation: Students will be able to evaluate their models and control systems 

through simulation-based and experimental-based investigations. 

Further detail on the course goals and outcomes is included in the ABET course 

profile provided in Fig. B.7 at the end of this appendix. 

B.2 Course Topics 

An outline of course topics is provided in Table B.2. The pedagogical approach 

throughout this course is to (1) examine high-level technical challenges and applica

tions, (2) focus in on fundamental tools and theory necessary to solve specific problems, 

and (3) allow students to exercise these tools on practical issues through application 

driven homework assignments and projects. In the following discussion we provide an 

overview of each chapter's content. 

B.2.1 Introductory Material 

The course opens with a broad overview of global issues associated with energy stor

age. These include the spatial mismatch between resources and demand, and the 

intermittency of renewable energy. The performance characteristics of batteries are 

placed in context with other energy storage & conversion devices by their specific 

power and energy density, as demonstrated by the Ragone plot in Fig. B.2. The 

sloped lines indicate the relative time required to extract and/or store energy from 

the device. This figure demonstrates that batteries and have high theoretical specific 

energy, but lower power density when compared to conventional internal combustion 

(IC) engines. For this reason, batteries are often combined with high specific power 

devices to form "hybrid" vehicle propulsion systems that achieve the desirable power 

characteristics. Batteries, by themselves, also encompass a broad range of energy and 

power densities depending on their chemistry (e.g. lead acid, Ni-Cd, NiMH, Li-ion, 

Li-ion polymer) and cell packaging (pouch, cylindrical, prismatic). 

Several fundamental topics are also introduced to provide the necessary foundation 

for future course material. These include Kirchhoff's voltage and current laws, battery 

test procedures (e.g. constant current, constant voltage, impedance measurements, 
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Table B.2 Outline of Course Topics 

Chapter 1: Introduction 
• Overview of chemistries, technologies, and challenges 
• Kirchhoff's Laws 
• Equivalent circuit models 
• Test methods and parameter identification 

Chapter 2: Physics-Based Models 
• Material properties and electrode thermodynamics 
• Butler-Volmer kinetics 
• Diffusion and electric potential 
• Numerical techniques 
• Model Reduction 

— Single particle model 
— Pade Approximations 
— Quasi-linearization 
— Projections onto Legendre polynomials 

Chapter 3: Battery Management Systems 
• State of charge estimation 

— Coulomb counting 
— Estimation theory 
— Kalman filters 

• State of health estimation 
— Overview of degradation mechanisms 
— Electrochemical impedance spectroscopy 

• Charge balancing 
— Passive techniques 
— Active balancing 

• Thermal dynamics and models 
• Thermal management 

Chapter 4: Vehicle Power Management 
• Electric architectures 
• Hybrid vehicle power management 
• Interaction between electrified transportation and power grids 

capacity tests, pulse tests), and parameter identification techniques (e.g. least squares). 

All of these tools will return within the context of upcoming course material. 

Next, we introduce the simplest category of mathematical battery models - equiva-
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Figure B.2 Ragone plot of various energy storage/propulsion devices and their "charge" 
times. Adapted from US Defense Logistics Agency Report [8]. 

lent circuits. These models seek to capture the salient physical phenomena through 

representative electric circuit elements. Examples include the OCV-R, OCV-R-RC, 

and impedance model, depicted in Fig. B.3. The OCV element is a variable voltage 

source whose value depends on cell SOC. It represents the equilibrium voltage of a 

bat tery at various charge levels. The R element represents the internal resistance, 

and can be a function of SOC and current direction. The RC element captures the 

relaxation effect. That is, immediately following a charge/discharge event one sees the 

terminal voltage slowly fall/raise as concentration gradients slowly reach equilibrium. 

The RC element produces the same behavior. The impedance model separates dynamic 

phenomena by their frequency range. For example, a resistor in series RQ typically 

captures the electrolyte and current collector resistance. An RctCdi-paiv represents the 

charge-transfer dynamics which occur at the solid particle surface. Finally, a Warburg 

element Zw models semi-infinite linear diffusion. Its properties include a constant 

phase of 45°. In total, these models represent the simplest category of battery models. 

Their simplicity is a key advantage, as it easily facilitates analysis and control design. 

However, the model parameters are non-physical and difficult to generalize to other 
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Figure B.3 Various equivalent circuit models: (a) OCV-R, (b) OCV-R-RC, (c) Impedance-
based. 

chemistries. 

B.2.2 Physics-Based Models 

Mathematical models of electrochemical propulsion devices span a spectrum - from 

high-fidelity physics-based models to simplified phenomenological models. The ap

propriate balance between model accuracy and simplicity depends on the specific 
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modeling objective. For example, if one desires to design improved material structural 

properties for a battery or fuel cell electrode, it may be important to account for 

particle-level mechanical stresses and electrochemical kinetics. However, if the aim 

is to analyze life cycle carbon footprints, then a relatively simple phenomenological 

model may suffice. 

In the introductory material, we introduced equivalent circuit models which are 

phenomenological in nature. In this chapter, we focus on physics-based models. 

This material is strongly based upon Section 2.1 of this dissertation. Specifically, 

we discuss how material properties can be used to calculate theoretic cell voltage, 

charge capacities, and energy densities. Next we focus on deriving the Butler-Volmer 

equation through the fundamental kinetic principles of reduction-oxidation reactions. 

The next topic covers diffusion, in both spherical and Cartesian coordinates, and 

electric potential manifested by distributed form versions of Ohm's law. To unify these 

principles, we demonstrate how all these phenomena integrate to form a complete 

electrochemical battery model. 

In total the physics-based battery model is a coupled set of partial differential 

algebraic equations, where the controllable inputs and measurable outputs are rep

resented by boundary conditions. This model is well-suited toward high accuracy 

simulation and validation. However, this model is not easily implement able on a 

real-time on-board electronic control unit for automotive applications. As such, we 

introduce the students to approximation methods that preserve important system 

dynamics while eliminating unnecessary complexity within the context of the control 

objective. This process, known as model reduction, is fundamental to almost all 

practical system-level modeling and control problems. 

Several battery model reduction techniques are discussed in the class, including 

the single particle model [163], Pade approximations, constraint linearization [180], 

and projections onto Legendre polynomials. For several assignments we consider 

the following example: Suppose our battery system does not experience extreme 

charge/discharge loads such that the concentration distributions along the length of 

the electrodes and separator remain fairly constant. In this case, it may be reasonable 

to approximate the spatial distributions by their average values. This produces the 

so-called single particle model shown schematically in Fig. B.4. The reduced model 

equations that result after applying this concept produce a state-space system with 

linear dynamics and a nonlinear output equation. The linear dynamics correspond 

to spherical diffusion in the solid material of the electrodes. The output equation 

computes cell voltage, which is nonlinear due to the thermodynamic and kinetic 
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Figure B.4 Conceptual description of the single particle model, which approximates each 
electrode as a single porous particle immersed in a zero-dimensional electrolyte. 

properties of the battery. The structure of this reduced model is extremely appealing 

for control applications, rendering it amenable to a vast range of control and estimator 

design techniques. In Section B.3 we describe how students utilize this model to design 

a Kalman filter for SOC estimation. 

B.2.3 Battery Management Systems 

This chapter focuses on cell and pack-level control systems. These control systems 

include state of charge estimation, state of health estimation, charge balancing, and 

thermal management. During the lectures we introduce the problem background and 

fundamental tools required to design each control system. Students then apply this 

knowledge in the homework assignments. The results of Chapter 4 provide a portion 

of this section's content. 

The state of charge estimation problem is introduced and contextualized against 

various applications (e.g. hybrid vehicles, plug-in vehicles, space vehicles, etc.). We 

discuss the various categories of estimation methods, including coulomb counting, volt

age inversion, impedance measurements, and Kalman filters. In particular, we focus 

attention to Kalman filter estimation theory and its application to the single particle 

model discussed above. Homework problems are assigned to progressively build the 

single particle SOC estimation scheme and explore Kalman filters, as described in 

Section B.3. 

Next we cover s ta te of health (SOH) estimation. First, we provide an overview 
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of the salient degradation mechanisms in Li-ion batteries. Then we formulate the 

SOH estimation problem as a parameter identification problem. That is, we postulate 

that parameters within equivalent circuit models change slowly over time. Our goal is 

to identify those parameter values from measurement data using, for example, least 

squares identification. 

The next topic is charge balancing. Charge balancing is motivated by the desire 

to ensure individual cells connected in series do not over-charge or over-discharge. 

This situation arises when one can only afford to monitor and control groups of cells, 

as opposed to each individual cell. Moreover, the characteristic behavior may vary 

slightly from cell to cell. This is especially true for high energy capacity battery 

packs which can contain thousands of cells. As such, we introduce passive balancing 

techniques (e.g. shunt-resistors or switched capacitors) and active balancing techniques 

(e.g. SOC-polling or power electronics). To demonstrate these methods, an example 

homework problem is included in Section B.3. We also discuss the charge balancing 

concept from Chapter 4 of this dissertation. 

The final section of this chapter discusses thermal modeling and management of 

batteries. Thermal management is a critical challenge for vehicular battery systems 

for several reasons. First, vehicles may encounter a wide range of environments, from 

the freezing temperatures of Oslo, Norway to the scorching hot desert regions in the 

Middle East. Second, the high charge/discharge rates and tight packaging associated 

with vehicle systems can produce elevated temperature levels. Third, temperature has 

a direct impact on health degradation and efficiency. Motivated by these challenges, 

we introduce the students to lumped thermal models of individual cells. These models 

are identified through least squares identification techniques. To close this chapter we 

provide an overview of the various thermal management actuation methods and how 

they scale from cells to packs. 

B.2.4 Vehicle Power Management 

The final chapter discusses vehicle power management. This chapter demonstrates how 

battery systems integrate within vehicle powertrains. First we review various hybrid 

and electric architectures. These include series, parallel, and power-split hybrids. 

We also discuss the power electronics and electric motor topologies typically used in 

electrified vehicles. Next we discuss hybrid vehicle power management, which seeks 

to design control systems which manage the power split between batteries and other 

power sources (e.g. IC engine, fuel cell, ultracapacitor). This component is strongly 
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Figure B.5 Block diagram of SOC estimation scheme using the single particle model and 
a Kalman filter. 

based upon the models, problem formulation, and results described in Chapters 2 

and 3 of this dissertation. The final topic covers the interaction between electrified 

transportat ion and power grids. Specifically, we discuss consumer-side charge tra

jectory optimization and power demand prediction for grid-connected PHEVs. The 

PHEV/grid interaction material is also based upon an outgrowth of research from this 

dissertation [82, 83]. 

B.3 Example Assignments 

This section describes several homework problems which exercise the fundamental tools 

developed in lecture. These assignments are the mechanism by which we execute the 

third step of our pedagogical philosophy: exercise fundamental tools on application 

relevant problems. In this appendix we describe the SOC estimation and charge 

balancing problems. 

B.3.1 The SOC Estimation Problem 

In the battery course the students are instructed to solve the most prominent battery 

estimation problem - SOC estimation. In many battery powered systems (e.g. laptops, 

123 



www.manaraa.com

electronic portable devices, and electric vehicles) one typically desires to know the 

battery SOC level, which represents the remaining available energy. Unfortunately, 

it is often impractical to implement sensors that directly measure the lithium-ion 

concentration in the solid material of the electrodes. We do, however, typically have 

access to voltage and current measurements. These measurements in combination 

with a control-oriented battery cell model allow us to dynamically estimate SOC [163]. 

A block diagram of the estimation scheme is provided in Fig. B.5. 

In this assignment the students apply a linearized version of the single particle 

model described in section B.2.2 with a Kalman filter to estimate battery SOC. The 

students then learn how Kalman filters can be tuned to tradeoff sensor noise with 

modeling errors by injecting Gaussian noise into the measured signals and applying 

incorrect initial conditions to the estimator. Consequently, the students learn about 

Kalman filtering theory while simultaneously solving a very practical battery systems 

problem using physical models developed in class. 

B.3.2 The Charge Balancing Problem 

A second battery systems and control problem relevant for vehicle applications is 

charge balancing. This problem is motivated by the fact that cells connected in series 

within battery packs may have unequal charge levels. This situation is problematic 

because individual cells can be inadvertently overcharged or over-discharged because 

the battery management system considers total battery pack voltage without knowl

edge of individual cell voltage. The end result is accelerated battery pack degradation 

and possibly catastrophic thermal runaway. This situation can be mitigated via a 

charge balancing scheme. A survey of such schemes can be found in [101]. 

In this assignment the students design and simulate a battery management system 

that utilizes shunt resistors to balance the voltage levels of two unbalanced cells 

connected in series. A schematic of the balancing scheme is shown in Fig. B.6. 

The students are instructed to use their creativity to design logic that compares 

the individual voltage levels to actuate the switches in a manner that equalizes cell 

voltage. Moreover, they are free to design the resistance value of the shunt resistors. 

They use simulation results and mathematical arguments to analyze how the shunt 

resistor method suffers from an inherent tradeoff between equalization time and power 

efficiency. Finally, they discover how voltage balancing does not necessarily balance 

SOC, motivating the application of SOC balancing schemes [181]. 

124 



www.manaraa.com

[ input 

Ei Rdu mp E, Rdu mp 

\ 

*A/vV-r\*A/Wi 

Batt 1 
K, 

\ 

Batt 2 

Figure B.6 Circuit diagram of shunt resistor equalization circuit. 

B.4 Conclusion 

This appendix describes a newly developed course on bat tery systems and control 

which has been directly impacted by the present dissertation. Like this dissertation, 

the course is focused on system-level modeling, design, and control. The objective of 

this courses is to educate a new generation of engineers capable of developing advanced 

sustainable transportation systems powered by batteries. 

For the first two offerings topics were covered in a conceptual manner. However, we 

recognize that student engagement thrives on application case studies and hardware 

experiments. In future terms we will add laboratory components to each course. 

This equipment will be shared for instruction across multiple courses and research 

across multiple teams/departments, thus financially benefiting from high-throughput. 

Images of this equipment are provided in Fig. 2.7 and 2.8 of Section 2.1.3. We 

envision that the students will solve homework problems via analysis and simulation 

first, then apply their designs to the laboratory bat tery test system. Pedagogically, 

these enhancements will marry conceptual analysis with hardware implementation 

- effectively increasing the impact and accessibility of each course. Through these 

efforts we anticipate a profound impact on job creation in sustainable transportation 

systems through education. 
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COURSE #: ME 499 / 599 
TERMS OFFERED: Winter 

TEXTBOOKS/REQUIRED MATERIAL: A coursepack of lecture notes and 
handouts will be distributed through Ctools. 
INSTRUCTOR: Stefanopoulou and Moura 
CoE BULLETIN DESCRIPTION: 
Introduction to battery modeling, control, and experimental characterization as related 
to electrified transportation systems Emphasis is placed upon system-level modeling, 
system identification, model reduction, control and estimation Specific topics include 
state-of-charge estimation, thermal dynamics, charge management, power electronics, 
and hybrid vehicle power management 

COURSE TITLE: BATTERY SYSTEMS & CONTROLS 
PREREQUISITES: 
ME 360 Modeling, Analysis and Control of Dynamic Systems 
ME 400 Mechanical Engineering Analysis 
COGNIZANT FACULTY: Stefanopoulou, Fathy, Moura 

FACULTY APPROVAL: 
COURSE TOPICS: (approximate number of hours in parentheses) 
1 Introduction, chemistries, circuit analysis, and test protocols (4) 
2 Modeling and simulation of equivalent circuit and electrochemical 

models (9) 
3 Battery control problems (8) 
4 Thermal modeling and control (2) 
5 Vehicle and Vehicle-to-Gnd level problems (4) 

COURSE STRUCTURE/SCHEDULE: 2 lectures per week @ 1 5 hours 

COURSE 
OBJECTIVES 

COURSE 
OUTCOMES 

ASSESSMENT 
TOOLS 

Links shown m brackets are to course outcomes that satisfy these objectives 
1 Introduce students to the broad issues and challenges associated with electrified transportation [1,6] 
2 Show students how to design, execute, and analyze laboratory experiments [7] 
3 Link fundamental physics and mathematics principles to application-oriented problems in electrified transportation [1-7] 
4 Provide opportunities for solving practical problems, through computer simulation or experimentation [1 -7] 

Links shown in brackets are to program educational outcomes 
1 Identify high-level technical challenges and distill them into technical, solvable engineering problems [a-k] 
2 Derive equation s that model battery dynamics, from circuit or electrochemical principles [a,c,e,k] 
3 Apply model reduction techniques to complex dynamic models [a,c,e,k] 
4 Synthesize Kalman filters for battery state-of-charge estimation [a,c,e,k] 
5 Design charge management algorithms [a,c,e,k] 
6 Apply control and estimation techniques to vehicle-level and vehicle-to-gnd level problems [a,c-e, g-k] 
7 Design experimental protocols for general battery characterization [a-g,k] 

1 Ten homework assignments assess outcomes 1 -6 
2 A group laboratory project assesses outcome 7 
3 End of term course evaluation provides student self-assessment of all course outcomes, 1-7 
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Appendix C 

Nomenclature 

Symbol 

Afr 

a 

an 

Cd 

c(;-) 

F 

F9 

I 

h 
IM/GI 

PM/G2 

*w 

io 

io,s 

H,i2 

J9 

Js 

K 

MP 

m 

np 

ns 

Pbatt 

Qbatt 

Descr ipt ion 

Effective frontal area of vehicle 

Vehicle acceleration 

Specific surface area of anode 

Aerodynamic drag coefficient 

Instantaneous cost function 

Faraday's constant 

Planetary gear force 

Current through each cell 

Engine inertia 

Motor/generator 1 inertia 

Motor/generator 2 inertia 

Wheel inertia 

Battery pack current 

Exchange current density for side reaction 

Cell current 

Optimal cost for control policy g 

Current density of side reaction 

Final drive ratio 

Molecular weight of product from side reaction 

Vehicle mass 

Number of parallel strings of cells 

Number of cells in series per string 

Power transfer from battery pack 

Battery pack charge capacity 

Uni t s 

[m2] 

[m/s2] 

[m2/m3] 

H 

[C/mol] 

[N] 

[A] 

[kg-m2] 

[kg-m2] 

[kg-m2] 

[kg-m2] 

[A] 

[A/m2] 

[A] 

H 
[A/m3] 

H 
[mol/kg 

[kg] 

H 
H 
[W] 

[A-s] 
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Symbol Description Units 

R 

•H-gas 

Rbatt 

RSEI 

*Hire 

s 
SOC 

TP 

T, M/Gl 

TM/G2 

U s,ref 

U(x) 

VCell 

voc 

v 

Wfuei 

X 

x 

Number of teeth on ring gear 

Universal gas constant 

Internal resistance of battery pack 

Resistance of solid electrolyte interphase (SEI) layer 

Tire radius 

Number of teeth on sun gear 

Battery state of charge 

Engine torque 

Motor/generator 1 torque 

Motor/generator 2 torque 

Equilibrium potential of side reaction 

Admissible set of controls 

Voltage of individual battery cell 

Battery pack open circuit voltage 

Vehicle speed 

Mass flow rate of fuel 

Admissible set of states 

Spatial coordinate across cell 

[J/K/mol] 

[Q] 

[fi/m2] 

m 

[N-m] 

[N-m] 

[N-m] 

[V] 

[V] 

[V] 

[m/s] 

[g/s] 

[m/m] 

a 
P 

(dfilm) 8fum 

Vgrid 

VM/GI 

VM/G2 

Vs 
Kp 
(J-roll 

P 

PP 

01,02 

UJe 

WM/G1 

^M/G2 

Linear objective weight 

Energy price ratio 

(Spatially averaged) anode-side resistive film 

thickness 

Grid-to-PHEV charging efficiency 

Motor/generator 1 power efficiency 

Motor/generator 2 power efficiency 

Over potential driving side reaction 

Conductivity of electrolyte 

Rolling friction coefficient 

Air density 

Side reaction product density 

Solid, electrolyte potential 

Engine crankshaft speed 

Motor/generator 1 speed 

Motor/generator 2 speed 

[USD/USD] 

[pm/m2] 

[V] 

[1/m/fi] 

m [kg/ 
[kg/m2] 

[V] 

[rad/s] 

[rad/s] 

[rad/s] 
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Appendix D 

Model Parameters 

D.l PHEV Model 

The engine fuel rate, W{Te,ue), in terms of g/s are provided in Fig D.l as a function 

of engine torque and speed. Figures D.2 and D.3 show the power efficiency contours 

of M / G l and M / G 2 respectively as functions of torque and speed. In both plots 

the dotted lines indicate torque limits as functions of speed. These constraints are 

implemented as described in Section 3.1.2. These empirical models are adapted from 

Argonne National Laboratory's PSAT software program [9]. 

Figure D . l Empirical model of engine fuel rate versus engine speed and torque from 
PSAT [9] 
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M/G1 (a.k.a. "Generator") Power Efficiency Contours 

Efficiency 
Torque Limit 

Speed [RPM] x10 

Figure D.2 Empirical model of M/Gl (a.k.a. "generator") power efficiency versus speed 
and torque from PSAT [9] 

400 
M/G2 (a.k.a. "Motor") Power Efficiency Contours 

-400 
0 1000 2000 3000 4000 5000 6000 

Speed [RPM] 

Figure D.3 Empirical model of M/G2 (a.k.a. "'motor") power efficiency versus speed and 
torque from PSAT [9] 
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D.2 Equilibrium Potentials of Battery Electrodes 

Section 2.1.2 describes the electrochemical battery model, in which the term Urefj(93) 

appears in the overpotential equation (2.18). This term represents the equilibrium 

potential of each electrode (j G {n,p} corresponds to the negative and positive elec

trodes, respectively) as a function of that electrode's bulk SOC, 93. These equilibrium 

potential functions were identified from the genetic parameter identification procedure 

described in [10] and are provided in Fig. D.4. 

0.4 0.6 
Electrode SOC 

0.4 0.6 
Electrode SOC 

Figure D.4 Equilibrium potentials of the (a) anode and (b) cathode as identified from 
the genetic parameter identification procedure in [10]. 
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D.3 SEI Growth Model Parameters 

Table D.l provides parameter values for each SEI growth model analyzed in the 

sensitivity analysis of Section 4.4.5. The first column of parameters shown in Table 

D.l are adopted from [7]. The second column of parameters have been identified to 

produce capacity fade trends that match the manufacturer's cycling and storage data 

[150]. 

Table D.l SEI Growth Model Parameters for Sensitivity Analysis in Section 4.4.5 

Values for map depicted in 
Symbol Fig. 2.6 & 4.10(a) Fig. 4.10(b) 
io,s 
MP 

RSEI 

U s,ref 

Kp 

PP 
U ref,n (On) 

1.5 x 10"6 A /m 2 

73000 mol/kg 
7.4 iml-m2 

0.4 V 
1 (m-fi)"1 

2100 kg/m 2 

Adopted from [7] 

4 x 10"8 A /m 2 

73000 mol/kg 
7.4 mfi-m2 

0.4 V 
1 (m-ft)"1 

2100 kg/m 2 

Adopted from [150] 
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Appendix E 

Distribution Convergence via the 
Central Limit Theorem 

The simulation method in Section 3.3 calculates the PHEV performance characteristics 

across a number of randomly generated drive cycles. The stopping criterion in this 

appendix seeks to answer the question: how many drive cycles are necessary to ensure 

the distribution of simulated PHEV performance characteristics has converged to the 

true distribution? Specifically, we seek convergence for the trip cost distribution. The 

central limit theorem (CLT) allows us to approximate how many iterations n we must 

simulate the study (see Section 3.3) in order that the sample mean is within a fraction 

a of the population mean with probability of at least b [182]. Mathematically, the 

main result is provided by the following proposition: 

Proposition 2. Suppose Cx is a random variable representing the trip cost for the 

ith drive cycle simulation. Furthermore, suppose that the C% 's are independently and 

identically distributed with mean E[C] and standard deviation std(C) for the true 

population. Then the number of iterations n for which 

Pr 

is satisfied is given by: 

i LIU cx - E[C] 

n > 

E[C] 

•stdiCl^fb+l"2 

<a) >b (E.l) 

(E.2) 
E[C]a 

Proof. Let us attempt to re-write the left hand side of (E.l) to represent a random 

variable with zero mean and unit variance, which will satisfy the key hypothesis of 

134 



www.manaraa.com

the CLT. This can be accomplished through the following algebraic manipulations: 

i LIU a - E[C] 
Pr -a < 

E[C] < a 

Pr ( -anE[C] + nE[C] < J ] C, < anE[C] + nE[C] 
2 = 1 

Pr [ -anE[C] < ^ (Ct - E[C]) < anE[C] 
t=i 

Pr 
-anE[C] <A rCt-E[C]\ anE[C] 
std(C) 

i = i 
std(C) ) ~ std(C) 

Pr 
-aE[C] 

nstd(C) 
< 

1 n 

-T 
a - E[C] 

std(C) 
< 

aE[C] 

Vnstd(C) 

> b 

> b 

> b 

> b 

> b 

(E.3) 

(E.4) 

(E.5) 

(E.6) 

(E.7) 

Let us define the random variable in the center of the inequality to be equal to Yn, 

which has zero mean and unit variance for all values of n. 

Pr 
-aE[C] 

y/nstd(C) 
<Yn< 

aE[C] \ 
V^std(C)J >b (E.8) 

The CLT states limin^oo Fyn(y) = $(?/), where $ denotes the cdf of a zero mean, unit 

variance normal distribution. Therefore, we may approximate the left hand side of 

(E.8) by: 
aE[C] 

2$ 1 >b V^std(c); *'-" (E -9 ) 

which uses the property of normal cdf's Pr(—a < Yn < a) = 2$(a) — 1, for some 

a e l Solving for n allows us to arrive at the following criterion: 

n > 
std(C) 
E[C]a 

$ - i 
6 + 1 

(E.10) 

where $ is the inverse of the zero-mean, unit variance normal cumulative distribution 

function. • 
The exact derivation of (E.10) requires knowledge of the population's mean E[C] 

and standard deviation std(C) beforehand. However we approximate these values 

by the sample mean and sample standard deviation since we do not know the true 

population metrics exactly. In practice, we run 100 simulations before computing 

the stopping condition (E.10) in order to obtain a reasonably accurate estimate and 

avoid premature termination. The stopping criterion parameters used in this study 
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are a = 0.05 and b = 0.95. 
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